Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S . f(x,y,z)=x+yf ( x , y , z ) = x + y ; S is the part of the plane 7x+3y+z=217 x + 3 y + z = 21 in the first octant.

(Multiple Choice)
4.9/5
(42)

Use Green's Theorem to evaluate the line integral along the positively oriented closed curve C. C3xydx+4x2dy\oint _ { C } 3 x y d x + 4 x ^ { 2 } d y , where C is the triangle with vertices (0,0)( 0,0 ) , (3,4)( 3,4 ) , and (0,4)( 0,4 ) .

(Multiple Choice)
4.8/5
(34)

Find the gradient vector field of f(x,y)=ln(x+2y)f ( x , y ) = \ln ( x + 2 y )

(Short Answer)
4.8/5
(33)

Use Stokes' Theorem to evaluate ScurlFdS\iint _ { S } \operatorname { curl } \mathbf { F } \cdot d \mathbf { S } S consists of the top and the four sides (but not the bottom) of the cube with vertices (±9,±9,±9)( \pm 9 , \pm 9 , \pm 9 ) oriented outward. F(x,y,z)=4xyzi+4xyj+4x2yzk\mathbf { F } ( x , y , z ) = 4 x y z \mathbf { i } + 4 x y \mathbf { j } + 4 x ^ { 2 } y z \mathbf { k }

(Short Answer)
4.8/5
(42)

Find the curl of the vector field. F(x,y,z)=6exsin(y)i+3excos(y)j+5zk\mathbf { F } ( x , y , z ) = 6 e ^ { x } \sin ( y ) \mathbf { i } + 3 e ^ { x } \cos ( y ) \mathbf { j } + 5 z \mathbf { k }

(Short Answer)
4.8/5
(41)

Evaluate the surface integral where S is the surface with parametric equations x=7uvx = 7 u v , y=6(u+v),z=6(uv),u2+v2=3y = 6 ( u + v ) , z = 6 ( u - v ) , u ^ { 2 } + v ^ { 2 } = 3 . S10yzdS\iint _ { S } 10 y z d S

(Multiple Choice)
4.9/5
(34)

Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S . f(x,y,z)=zf ( x , y , z ) = z ; S is the part of the torus with vector representation r(u,v)=(5+3cosv)cosui+(5+3cosv)sinuj+3sinvk\mathbf { r } ( u , v ) = ( 5 + 3 \cos v ) \cos u \mathbf { i } + ( 5 + 3 \cos v ) \sin u \mathbf { j } + 3 \sin v \mathbf { k } , 0u2π0 \leq u \leq 2 \pi , 0vπ20 \leq v \leq \frac { \pi } { 2 } .

(Multiple Choice)
4.8/5
(36)

Suppose that f(x,y,z)=g(x2+y2+z2)f ( x , y , z ) = g \left( \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \right) where g is a function of one variable such that g(5)=8g ( 5 ) = 8 . Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S where S is the sphere x2+y2+z2=25x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25

(Multiple Choice)
4.9/5
(39)

Find the mass of the surface S having the given mass density. S is the hemisphere x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 , z0z \geq 0 ; the density at a point P on S is equal to the distance between P and the xy-plane.

(Multiple Choice)
4.8/5
(30)

Show that F is conservative and find a function f such that F=f\mathbf { F } = \nabla f , and use this result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where C is any path from A(x0,y0)A \left( x _ { 0 } , y _ { 0 } \right) to B(x1,y1)B \left( x _ { 1 } , y _ { 1 } \right) . F(x,y)=(12x2y216xy3)i+(8x3y24x2y2)j\mathbf { F } ( x , y ) = \left( 12 x ^ { 2 } y ^ { 2 } - 16 x y ^ { 3 } \right) \mathbf { i } + \left( 8 x ^ { 3 } y - 24 x ^ { 2 } y ^ { 2 } \right) \mathbf { j } ; A(3,1)A ( 3,1 ) and B(3,2)B ( 3,2 )

(Multiple Choice)
4.8/5
(44)

Evaluate the line integral over the given curve C. C(3x+7y3)ds\int _ { C } \left( 3 x + 7 y ^ { 3 } \right) d s ; C:r(t)=(t3)i+tjC : \mathbf { r } ( t ) = ( t - 3 ) \mathbf { i } + t \mathbf { j } , 0t30 \leq t \leq 3

(Multiple Choice)
4.9/5
(39)

Evaluate the line integral. 4yzxds C:x=t,y=t,z=t0\leqt\leq\pi

(Short Answer)
4.9/5
(40)

Let f be a scalar field. Determine whether the expression is meaningful. If so, state whether the expression represents a scalar field or a vector field. (gradf)\nabla ( \operatorname { grad } f )

(Short Answer)
4.8/5
(42)

Evaluate Cyzdy+xydz\int _ { C } y z d y + x y d z , where C is given by x=10t,y=3t,z=10t2,0t1x = 10 \sqrt { t } , y = 3 t , z = 10 t ^ { 2 } , 0 \leq t \leq 1 Round your answer to two decimal place.

(Multiple Choice)
4.8/5
(43)

Find the area of the surface S where S is the part of the plane z=2x2+yz = 2 x ^ { 2 } + y that lies above the triangular region with vertices (0,0)( 0,0 ) \text {, } (3,0)( 3,0 ) , and (3,3)( 3,3 )

(Short Answer)
4.8/5
(39)

Use Stokes' Theorem to evaluate ScurFdS\iint _ { S } \operatorname { cur } \mathbf { F } \cdot d \mathbf { S } . F(x,y,z)=6xyi+5yzj+2z2k\mathbf { F } ( x , y , z ) = 6 x y \mathbf { i } + 5 y z \mathbf { j } + 2 z ^ { 2 } \mathbf { k } ; S is the part of the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } lying below the plane z=6z = 6 and oriented with normal pointing downward.

(Multiple Choice)
4.9/5
(37)

Evaluate the line integral over the given curve C. C(8x+2y2)ds\int _ { C } \left( 8 x + 2 y ^ { 2 } \right) d s ; C:r(t)=(t8)i+tjC : \mathbf { r } ( t ) = ( t - 8 ) \mathbf { i } + t \mathbf { j } , 0t30 \leq t \leq 3

(Multiple Choice)
4.8/5
(43)

Use Stoke's theorem to evaluate SFdr.\iint _ { S } \mathbf { F } \cdot d r . F(x,y,z)=2.56xi+16yj+4(y2+x2)k\mathbf { F } ( x , y , z ) = 2.56 x \mathbf { i } + 16 y \mathbf { j } + 4 \left( y ^ { 2 } + x ^ { 2 } \right) \mathbf { k } C is the boundary of the part of the paraboloid z=2.56x2y2z = 2.56 - x ^ { 2 } - y ^ { 2 } in the first octant. C is oriented counterclockwise as viewed from above.

(Short Answer)
4.8/5
(35)

Determine whether or not vector field is conservative. If it is conservative, find a function f such that F=f.\mathbf { F } = \nabla f . F(x,y,z)=7zyi+7xzj+7xyk\mathbf { F } ( x , y , z ) = 7 z y \mathbf { i } + 7 x z \mathbf { j } + 7 x y \mathbf { k }

(Short Answer)
4.8/5
(34)

Determine whether or not F is a conservative vector field. If it is, find a function f such that F=f.\mathbf { F } = \nabla f . F=(4+2xy+lnx)i+x2j\mathbf { F } = ( 4 + 2 x y + \ln x ) \mathbf { i } + x ^ { 2 } \mathbf { j }

(Short Answer)
4.9/5
(44)
Showing 61 - 80 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)