Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use Stokes' Theorem to evaluate CFdr\oint _ { C } \mathbf { F } \cdot d \mathbf { r } . F(x,y,z)=7zi+yj+4xzk\mathbf { F } ( x , y , z ) = 7 z \mathbf { i } + y \mathbf { j } + 4 x z \mathbf { k } ; C is the boundary of the triangle with vertices (6,0,0)( 6,0,0 ) , (0,6,0)( 0,6,0 ) , and (0,0,6)( 0,0,6 ) oriented in a counterclockwise direction when viewed from above

(Short Answer)
4.8/5
(41)

Consider the vector field F(x,y)=i+xj\mathbf { F } ( x , y ) = \mathbf { i } + x \mathbf { j } If a particle starts at the point (10,4)( 10,4 ) in the velocity field given by F, find an equation of the path it follows.

(Short Answer)
4.8/5
(36)

Find the exact mass of a thin wire in the shape of the helix x=2sin(t),y=2cos(t),z=3t,0t2πx = 2 \sin ( t ) , y = 2 \cos ( t ) , z = 3 t , 0 \leq t \leq 2 \pi if the density is 5.

(Multiple Choice)
4.8/5
(30)

Evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } for the vector field F and the path C. (Hint: Show that F is conservative, and pick a simpler path.) F(x,y)=(16x3y24ysinx)i+(8x4y+4cosx)j\mathbf { F } ( x , y ) = \left( 16 x ^ { 3 } y ^ { 2 } - 4 y \sin x \right) \mathbf { i } + \left( 8 x ^ { 4 } y + 4 \cos x \right) \mathbf { j } C: r(t)=(3sint)i+2costj;0tπ\mathbf { r } ( t ) = ( 3 - \sin t ) \mathbf { i } + 2 \cos t \mathbf { j } ; \quad 0 \leq t \leq \pi

(Multiple Choice)
4.8/5
(34)

Evaluate the surface integral. S8xzdS\iint _ { S } 8 x z d S S is the part of the plane 2x+2y+z=42 x + 2 y + z = 4 that lies in the first octant.

(Multiple Choice)
4.8/5
(32)

Determine whether F is conservative. If so, find a function f such that F=f.\mathbf { F } = \nabla f . . F(x,y,z)=9x2y4z2i+12x3y3z2j+6x3y4zk\mathbf { F } ( x , y , z ) = 9 x ^ { 2 } y ^ { 4 } z ^ { 2 } \mathbf { i } + 12 x ^ { 3 } y ^ { 3 } z ^ { 2 } \mathbf { j } + 6 x ^ { 3 } y ^ { 4 } z \mathbf { k }

(Short Answer)
4.7/5
(36)

Determine whether or not F is a conservative vector field. If it is, find a function f such that F=f.\mathbf { F } = \nabla f . F=(8ye8x+siny)i+(e8x+xcosy)j\mathbf { F } = \left( 8 y e ^ { 8 x } + \sin y \right) \mathbf { i } + \left( e ^ { 8 x } + x \cos y \right) \mathbf { j }

(Short Answer)
4.9/5
(45)

A thin wire in the shape of a quarter-circle r(t)=6costi+6sintj\mathbf { r } ( t ) = 6 \cos t \mathbf { i } + 6 \sin t \mathbf { j } , 0tπ20 \leq t \leq \frac { \pi } { 2 } , has a linear mass density π(x,y)=2x+4y\pi ( x , y ) = 2 x + 4 y . Find the mass and the location of the center of mass of the wire.

(Short Answer)
4.9/5
(44)

Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S . f(x,y,z)=5x+6y+zf ( x , y , z ) = 5 x + 6 y + z ; S is the part of the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } between the planes z=1z = 1 and z=4z = 4 .

(Multiple Choice)
4.8/5
(39)

Find the work done by the force field F(x,y)=24xi+12(2y+1)j\mathbf { F } ( x , y ) = 24 x \mathbf { i } + 12 ( 2 y + 1 ) \mathbf { j } in moving an object along an arch of the cycloid r(t)=(tsin(t))i+(1cos(t))j,0t2π\mathbf { r } ( t ) = ( t - \sin ( t ) ) \mathbf { i } + ( 1 - \cos ( t ) ) \mathbf { j } , 0 \leq t \leq 2 \pi

(Short Answer)
4.8/5
(36)

Use Green's Theorem and/or a computer algebra system to evaluate Cx2ydxxy2dy\int _ { C } x ^ { 2 } y d x - x y ^ { 2 } d y where C is the circle x2+y2=64x ^ { 2 } + y ^ { 2 } = 64 with counterclockwise orientation.

(Multiple Choice)
4.8/5
(35)

Find the curl of the vector field F. F(x,y,x)=3yz3i+8x5y4j+4xk\mathbf { F } ( x , y , x ) = 3 y z ^ { 3 } \mathbf { i } + 8 x ^ { 5 } y ^ { 4 } \mathbf { j } + 4 x \mathbf { k }

(Multiple Choice)
4.9/5
(37)

A particle starts at the point (3,0)( - 3,0 ) , moves along the x-axis to (3, 0) and then along the semicircle y=9x2y = \sqrt { 9 - x ^ { 2 } } to the starting point. Use Green's Theorem to find the work done on this particle by the force field F(x,y)=24x,8x3+24xy2\mathbf { F } ( x , y ) = \left\langle 24 x , 8 x ^ { 3 } + 24 x y ^ { 2 } \right\rangle

(Multiple Choice)
4.9/5
(39)

Find a function f such that F=f\mathbf { F } = \nabla f and use it to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the given curve C. F(x,y)=yi+(x+6y)j\mathbf { F } ( x , y ) = y \mathbf { i } + ( x + 6 y ) \mathbf { j } C is the upper semicircle that starts at (1, 2) and ends at (5, 2).

(Short Answer)
4.7/5
(39)

Find the correct identity, if f is a scalar field, F and G are vector fields.

(Multiple Choice)
4.8/5
(35)

Match the equation with one of the graphs below. r(u,v)=u2i+ucosvj+usinvk\mathbf { r } ( u , v ) = u ^ { 2 } \mathbf { i } + u \cos v \mathbf { j } + u \sin v \mathbf { k }

(Multiple Choice)
4.9/5
(30)

Let F=f,\mathbf { F } = \nabla f , where f(x,y)=sin(x8y)f ( x , y ) = \sin ( x - 8 y ) . Which of the following equations does the line segment from (0,0)( 0,0 ) to (0,π)( 0 , \pi ) satisy?

(Multiple Choice)
4.8/5
(38)

Find the div F if F(x,y,z)=exz(cosyzi+sinyzjk)\mathbf { F } ( x , y , z ) = e ^ { x z } ( \cos y z \mathbf { i } + \sin y z \mathbf { j } - \mathbf { k } ) .

(Short Answer)
4.8/5
(25)

Below is given the plot of a vector field F in the xy-plane. (The z-component of F is 0.) By studying the plot, determine whether div F is positive, negative, or zero. Below is given the plot of a vector field F in the xy-plane. (The z-component of F is 0.) By studying the plot, determine whether div F is positive, negative, or zero.

(Multiple Choice)
4.9/5
(39)

Let F be a vector field. Determine whether the expression is meaningful. If so, state whether the expression represents a scalar field or a vector field. (×F)\nabla \cdot ( \nabla \times \mathbf { F } )

(Short Answer)
4.8/5
(37)
Showing 21 - 40 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)