Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find (a) the divergence and (b) the curl of the vector field F. F(x,y,z)=coszi+5ysin3zj+4x2zk\mathbf { F } ( x , y , z ) = \cos z \mathbf { i } + 5 y \sin 3 z \mathbf { j } + 4 x ^ { 2 } z \mathbf { k }

(Short Answer)
4.8/5
(33)

Determine whether or not F is a conservative vector field. If it is, find a function f such that F=f.\mathbf { F } = \nabla f . F=(8x+5y)i+(5x+12y)j\mathbf { F } = ( 8 x + 5 y ) \mathbf { i } + ( 5 x + 12 y ) \mathbf { j } .

(Short Answer)
5.0/5
(35)

Set up, but do not evaluate, a double integral for the area of the surface with parametric equations x=9ucosv,y=9usinv,z=u2,0u2,0v2πx = 9 u \cos v , y = 9 u \sin v , z = u ^ { 2 } , 0 \leq u \leq 2,0 \leq v \leq 2 \pi

(Short Answer)
4.8/5
(48)

Find the divergence of the vector field F. F(x,y,x)=xz4i+2x4zj5y3zk\mathbf { F } ( x , y , x ) = x z ^ { 4 } \mathbf { i } + 2 x ^ { 4 } z \mathbf { j } - 5 y ^ { 3 } z \mathbf { k }

(Multiple Choice)
4.9/5
(43)

Use Stokes' Theorem to evaluate ScurlFdS\iint _ { S } \operatorname { curl } \mathbf { F } \cdot d \mathbf { S } F(x,y,z)=7xyi+7exj+7xy2k\mathbf { F } ( x , y , z ) = 7 x y \mathbf { i } + 7 e ^ { x } \mathbf { j } + 7 x y ^ { 2 } \mathbf { k } S consists of the four sides of the pyramid with vertices (0, 0, 0), (3, 0, 0), (0, 0, 3), (3, 0,3) and (0, 3, 0) that lie to the right of the xz-plane, oriented in the direction of the positive y-axis.

(Multiple Choice)
4.7/5
(30)

A plane lamina with constant density ρ(x,y)=12\rho ( x , y ) = 12 occupies a region in the xy-plane bounded by a simple closed path C. Its moments of inertia about the axes are Ix=ρ3Cy3dx and Iy=ρ3Cx3dyI _ { x } = - \frac { \rho } { 3 } \int _ { C } y ^ { 3 } d x \text { and } I _ { y } = \frac { \rho } { 3 } \int _ { C } x ^ { 3 } d y Find the moments of inertia about the axes, if C is a rectangle with vertices (0, 0), (4, 0), (4, 5) and (0,5)( 0,5 ) .

(Multiple Choice)
4.8/5
(40)

Suppose that F is an inverse square force field, that is, F=4rr3\mathbf { F } = \frac { 4 \mathbf { r } } { | \mathbf { r } | ^ { 3 } } where r=xi+yj+zk\mathbf { r } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } Find the work done by F in moving an object from a point P1P _ { 1 } along a path to a point P2P _ { 2 } in terms of the distances d1d _ { 1 } and d2d _ { 2 } from these points to the origin.

(Short Answer)
4.7/5
(30)

Find the curl of the vector field. F(x,y,z)=10xyi+10yzj+7xzk\mathbf { F } ( x , y , z ) = 10 x y \mathbf { i } + 10 y z \mathbf { j } + 7 x z \mathbf { k }

(Multiple Choice)
4.9/5
(39)

Which plot illustrates the vector field F(x,y,z)=i?\mathbf { F } ( x , y , z ) = \mathbf { i } ?

(Multiple Choice)
4.8/5
(32)

Use Stoke's theorem to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } where F(x,y,z)=e7xi+e4yj+e5xk\mathbf { F } ( x , y , z ) = e ^ { - 7 x } \mathbf { i } + e ^ { 4 y } \mathbf { j } + e ^ { 5 x } \mathbf { k } and C is the boundary of the part of the plane 8x+y+8z=88 x + y + 8 z = 8 in the first octant.

(Multiple Choice)
5.0/5
(38)

Find the area of the part of the surface y=20x+z2y = 20 x + z ^ { 2 } that lies between the planes x = 0, x = 4, z=0z = 0 , and z = 1.

(Multiple Choice)
4.9/5
(40)

Use Green's Theorem to evaluate the line integral along the given positively oriented curve. Csinydx+xcosydy\int _ { C } \sin y d x + x \cos y d y C is the ellipse x2+xy+y2=2x ^ { 2 } + x y + y ^ { 2 } = 2

(Short Answer)
5.0/5
(37)

Use the Divergence Theorem to find the flux of F across S; that is, calculate SFndS\iint _ { S } \mathbf { F } \cdot \mathbf { n } d S . F(x,y,z)=(9xy+cosz)i+(xsinz)j+4xzk\mathbf { F } ( x , y , z ) = ( 9 x y + \cos z ) \mathbf { i } + ( x - \sin z ) \mathbf { j } + 4 x z \mathbf { k } ; S is the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4

(Short Answer)
4.9/5
(34)

Determine whether or not vector field is conservative. If it is conservative, find a function f such that F=f.\mathbf { F } = \nabla f . F(x,y,z)=12xi+8yj+2zk\mathbf { F } ( x , y , z ) = 12 x \mathbf { i } + 8 y \mathbf { j } + 2 z \mathbf { k }

(Short Answer)
4.8/5
(41)

Find an equation in rectangular coordinates, and then identify the surface. r(u,v)=6sinui+3vj+7cosukr ( u , v ) = 6 \sin u \mathbf { i } + 3 v \mathbf { j } + 7 \cos u \mathbf { k }

(Short Answer)
4.9/5
(28)

Find the area of the surface. The part of the paraboloid r(u,v)=ucosvi+usinvj+u2k\mathbf { r } ( u , v ) = u \cos v \mathbf { i } + u \sin v \mathbf { j } + u ^ { 2 } \mathbf { k } ; 0u20 \leq u \leq 2 , 0v2π0 \leq v \leq 2 \pi

(Multiple Choice)
4.9/5
(35)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , that is, find the flux of F across S. F(x,y,z)=5zi+3yj5xk\mathbf { F } ( x , y , z ) = - 5 z \mathbf { i } + 3 y \mathbf { j } - 5 x \mathbf { k } ; S is the hemisphere z=9x2y2z = \sqrt { 9 - x ^ { 2 } - y ^ { 2 } } ; n points upward.

(Multiple Choice)
4.8/5
(38)

Find an equation of the tangent plane to the parametric surface represented by r at the specified point. r(u,v)=uevi+uvj+veuk\mathbf { r } ( u , v ) = u e ^ { v } \mathbf { i } + u v \mathbf { j } + v e ^ { - u } \mathbf { k } ; u = ln 9, v = 0

(Short Answer)
4.8/5
(40)

Find the moment of inertia about the z-axis of a thin funnel in the shape of a cone z=x2+y2,1z4z = \sqrt { x ^ { 2 } + y ^ { 2 } } , 1 \leq z \leq 4 if its density function is ρ(x,y,z)=12z\rho ( x , y , z ) = 12 - z

(Short Answer)
4.9/5
(37)

Find a function f such that F=f\mathbf { F } = \nabla f , and use it to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the given curve C. F(x,y)=x5y6i+y5x6j\mathbf { F } ( x , y ) = x ^ { 5 } y ^ { 6 } \mathbf { i } + y ^ { 5 } x ^ { 6 } \mathbf { j } C:r(t)=ti+(1+t3)j,0t1C : \mathbf { r } ( t ) = \sqrt { t } \mathbf { i } + \left( 1 + t ^ { 3 } \right) \mathbf { j } , 0 \leq t \leq 1

(Short Answer)
4.8/5
(42)
Showing 81 - 100 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)