Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use Stokes' Theorem to evaluate CFdr\oint _ { C } \mathbf { F } \cdot d \mathbf { r } . F(x,y,z)=7cosxi+5eyj+2xyk\mathbf { F } ( x , y , z ) = 7 \cos x \mathbf { i } + 5 e ^ { y } \mathbf { j } + 2 x y \mathbf { k } ; C is the curve obtained by intersecting the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 with the hyperbolic paraboloid z=x2y2z = x ^ { 2 } - y ^ { 2 } , oriented in a counterclockwise direction when viewed from above

(Multiple Choice)
4.9/5
(34)

Determine whether F is conservative. If so, find a function f such that F=f\mathbf { F } = \nabla f . F(x,y)=(6x24x3y)e2xyi4x4e2xyj\mathbf { F } ( x , y ) = \left( 6 x ^ { 2 } - 4 x ^ { 3 } y \right) e ^ { - 2 x y } \mathbf { i } - 4 x ^ { 4 } e ^ { - 2 x y } \mathbf { j }

(Multiple Choice)
4.9/5
(36)

Let R be a plane region of area A bounded by a piecewise-smooth simple closed curve C. Using Green's Theorem, it can be shown that the centroid of R is (xˉ,yˉ)( \bar { x } , \bar { y } ) , where xˉ=12ACx2dy\bar { x } = \frac { 1 } { 2 A } \oint _ { C } x ^ { 2 } d y yˉ=12ACy2dx\bar { y } = - \frac { 1 } { 2 A } \oint _ { C } y ^ { 2 } d x Use these results to find the centroid of the given region. The triangle with vertices (0,0)( 0,0 ) , (3,0)( 3,0 ) , and (3,4)( 3,4 ) .

(Short Answer)
4.9/5
(26)

Use a computer algebra system to compute the flux of F across S. S is the surface of the cube cut from the first octant by the planes x=π2,y=π2,z=π2x = \frac { \pi } { 2 } , y = \frac { \pi } { 2 } , z = \frac { \pi } { 2 } F(x,y,z)=3sinxcos2yi+3sin3zcos4zj+3sin5zcos6xk\mathbf { F } ( x , y , z ) = 3 \sin x \cos ^ { 2 } y \mathbf { i } + 3 \sin ^ { 3 } z \cos ^ { 4 } z \mathbf { j } + 3 \sin ^ { 5 } z \cos ^ { 6 } x \mathbf { k }

(Multiple Choice)
4.9/5
(43)

Find the gradient vector field of the scalar function F. (That is, find the conservative vector field F for the potential function f of F.) f(x,y,z)=5xy3+3yz2f ( x , y , z ) = 5 x y ^ { 3 } + 3 y z ^ { 2 }

(Multiple Choice)
4.9/5
(37)

A fluid with density 1,3301,330 flows with velocity v=yi+j+zk\mathbf { v } = y \mathbf { i } + \mathbf { j } + z \mathbf { k } Find the rate of flow upward through the paraboloid z=9(x2+y2)3,x2+y236z = 9 - \frac { \left( x ^ { 2 } + y ^ { 2 } \right) } { 3 } , x ^ { 2 } + y ^ { 2 } \leq 36

(Short Answer)
4.8/5
(25)

Calculate the work done by the force field F(x,y,z)=(x2+10z2)i+(y2+14x2)j+(z2+12y2)k\mathbf { F } ( x , y , z ) = \left( x ^ { 2 } + 10 z ^ { 2 } \right) \mathbf { i } + \left( y ^ { 2 } + 14 x ^ { 2 } \right) \mathbf { j } + \left( z ^ { 2 } + 12 y ^ { 2 } \right) \mathbf { k } when a particle moves under its influence around the edge of the part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 that lies in the first octant, in a counterclockwise direction as viewed from above.

(Short Answer)
4.9/5
(36)

Find the area of the part of paraboloid x=y2+z2x = y ^ { 2 } + z ^ { 2 } that lies inside the cylinder x2+y2=64x ^ { 2 } + y ^ { 2 } = 64

(Short Answer)
4.7/5
(47)

Find the area of the surface. The part of the paraboloid r(u,v)=ucosvi+usinvj+u2k\mathbf { r } ( u , v ) = u \cos v \mathbf { i } + u \sin v \mathbf { j } + u ^ { 2 } \mathbf { k } ; 0u70 \leq u \leq 7 , 0v2π0 \leq v \leq 2 \pi

(Multiple Choice)
4.8/5
(33)

The flow lines (or streamlines) of a vector field are the paths followed by a particle whose velocity field is the given vector field. Thus, the vectors in a vector field are tangent to the flow lines. The flow lines of the vector field F(x,y)=8xi32yj\mathbf { F } ( x , y ) = 8 x \mathbf { i } - 32 y \mathbf { j } satisfy the differential equations dxdt=8x\frac { d x } { d t } = 8 x and dydt=32y.\frac { d y } { d t } = - 32 y . Solve these differential equations to find the equations of the family of flow lines.

(Short Answer)
4.7/5
(40)

Find the value of the constant c such that the vector field G(x,y,x)=(5x+9y5+3z)i+(6x3+2y+8z)j+(czx)k\mathrm { G } ( x , y , x ) = \left( 5 x + 9 y ^ { 5 } + 3 z \right) \mathbf { i } + \left( 6 x ^ { 3 } + 2 y + 8 z \right) \mathbf { j } + ( c z - x ) \mathbf { k } is the curl of some vector field F.

(Multiple Choice)
4.9/5
(26)

The plot of a vector field is shown below. A particle is moved  from the point \text { from the point } (3,2)( - 3,2 )  to \text { to } (3,2)( 3,2 ) . By inspection, determine whether the work done by F on the particle is positive, negative, or zero.  The plot of a vector field is shown below. A particle is moved  \text { from the point }   ( - 3,2 )   \text { to }   ( 3,2 )  . By inspection, determine whether the work done by F on the particle is positive, negative, or zero.

(Short Answer)
4.8/5
(39)

Find an equation of the tangent plane to the parametric surface represented by r at the specified point. r(u,v)=(u2v2)i+uj+vk\mathbf { r } ( u , v ) = \left( u ^ { 2 } - v ^ { 2 } \right) \mathbf { i } + u \mathbf { j } + v \mathbf { k } ; (0,3,3)( 0,3,3 )

(Short Answer)
4.9/5
(38)

Use Gauss's Law to find the charge contained in the solid hemisphere x2+y2+z2144,z0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 144 , z \geq 0 , if the electric field is E(x,y,z)=xi+yj+2zk\mathbf { E } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + 2 z \mathbf { k }

(Short Answer)
4.8/5
(32)

Show that F is conservative and find a function f such that F=f\mathbf { F } = \nabla f , and use this result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where C is any path from A(x0,y0)A \left( x _ { 0 } , y _ { 0 } \right) to B(x1,y1)B \left( x _ { 1 } , y _ { 1 } \right) . F(x,y)=(4xy210xy2)i+(4x2y10x2y)j\mathbf { F } ( x , y ) = \left( 4 x y ^ { 2 } - 10 x y ^ { 2 } \right) \mathbf { i } + \left( 4 x ^ { 2 } y - 10 x ^ { 2 } y \right) \mathbf { j } ; A(3,0)A ( 3,0 ) and B(3,2)B ( 3,2 )

(Multiple Choice)
4.9/5
(35)

Evaluate the surface integral. S is the part of the cylinder z2+y2=1z ^ { 2 } + y ^ { 2 } = 1 between the planes x=0x = 0 and x=1x = 1 in the first octant. S4(x2y+z)dS\iint _ { S } 4 \left( x ^ { 2 } y + z \right) d S

(Short Answer)
4.8/5
(42)

Use Green's Theorem to evaluate the line integral along the positively oriented closed curve C. C(6xy+8ln(1+x))dx+4x2dy\oint _ { C } ( 6 x y + 8 \ln ( 1 + x ) ) d x + 4 x ^ { 2 } d y , where C is the cardioid r=3+3cosθr = 3 + 3 \cos \theta .

(Multiple Choice)
4.9/5
(28)

Find the work done by the force field F on a particle that moves along the curve C. F(x,y)=(5x+5y)i+4xyj\mathbf { F } ( x , y ) = ( 5 x + 5 y ) \mathbf { i } + 4 x y \mathbf { j } ; C:r(t)=3t2i+t2jC : \mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } + t ^ { 2 } \mathbf { j } , 0t10 \leq t \leq 1

(Multiple Choice)
4.8/5
(40)

Find the curl of 2x2zi+0j+9xz2k2 x ^ { 2 } z \mathbf { i } + 0 \mathbf { j } + 9 x z ^ { 2 } \mathbf { k } .

(Short Answer)
4.8/5
(38)

A particle is moving in a velocity field V(x,y,z)=2yi+3x2j+(z3x)k\mathrm { V } ( x , y , z ) = 2 y \mathbf { i } + 3 x ^ { 2 } \mathbf { j } + ( z - 3 x ) \mathbf { k } At time t = 1 the particle is located at the point (1, 5, 5). a). What is the velocity of the particle at t = 1? b). What is the approximate location of the particle at t = 1.01?

(Short Answer)
4.8/5
(34)
Showing 41 - 60 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)