Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The temperature at the point (x,y,z)( x , y , z ) in a substance with conductivity KK is u(x,y,z)=6x2+6y2u ( x , y , z ) = 6 x ^ { 2 } + 6 y ^ { 2 } Find the rate of heat flow inward across the cylindrical y2+z2=6,0x5y ^ { 2 } + z ^ { 2 } = 6 , \quad 0 \leq x \leq 5

(Multiple Choice)
4.8/5
(40)

Find a vector representation for the surface. The plane that passes through the point (2,5,1)( 2,5,1 ) and contains the vectors 2i+5j3k2 \mathbf { i } + 5 \mathbf { j } - 3 \mathbf { k } and 2i3j+5k2 \mathbf { i } - 3 \mathbf { j } + 5 \mathbf { k } ..

(Short Answer)
4.8/5
(48)

Use Stokes' Theorem to evaluate ScurFdS\iint _ { S } \operatorname { cur } \mathbf { F } \cdot d \mathbf { S } . F(x,y,z)=4xyi+5yzj+2z2k\mathbf { F } ( x , y , z ) = 4 x y \mathbf { i } + 5 y z \mathbf { j } + 2 z ^ { 2 } \mathbf { k } ; S is the part of the ellipsoid 9x2+9y2+4z2=369 x ^ { 2 } + 9 y ^ { 2 } + 4 z ^ { 2 } = 36 lying above the xy-plane and oriented with normal pointing upward.

(Short Answer)
4.8/5
(28)

Let r=xi+yj+zk and r=r\mathbf { r } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } \text { and } r = | \mathbf { r } | \text {. }  Find ×(r)\text { Find } \nabla \times ( \mathbf { r } )

(Short Answer)
4.8/5
(40)

Show that F is conservative, and find a function f such that F=f\mathbf { F } = \nabla f , and use the result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where C is any curve from A(x0,y0,z0)A \left( x _ { 0 } , y _ { 0 } , z _ { 0 } \right) to B(x1,y1,z1)B \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) . F(x,y,z)=6xyi+(3x2+4yz2)j+4y2zk\mathbf { F } ( x , y , z ) = 6 x y \mathbf { i } + \left( 3 x ^ { 2 } + 4 y z ^ { 2 } \right) \mathbf { j } + 4 y ^ { 2 } z \mathbf { k } ; A(0,0,0)A ( 0,0,0 ) and B(2,2,0)B ( 2 , - 2,0 )

(Multiple Choice)
4.8/5
(32)

Find an equation of the tangent plane to the parametric surface represented by r at the specified point. r(u,v)=uevi+uvj+veuk\mathbf { r } ( u , v ) = u e ^ { v } \mathbf { i } + u v \mathbf { j } + v e ^ { - u } \mathbf { k } ; u = ln 5, v = 0

(Short Answer)
4.9/5
(38)

Determine whether F is conservative. If so, find a function f such that F=f\mathbf { F } = \nabla f . F(x,y)=(4x3+2y)i+(3x4y3)j\mathbf { F } ( x , y ) = \left( 4 x ^ { 3 } + 2 y \right) \mathbf { i } + \left( 3 x - 4 y ^ { 3 } \right) \mathbf { j }

(Multiple Choice)
4.9/5
(37)

Find the area of the surface S where S is the part of the sphere x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 that lies inside the cylinder x2x+y2=0x ^ { 2 } - x + y ^ { 2 } = 0

(Short Answer)
4.8/5
(31)

Use Green's Theorem to evaluate the line integral along the positively oriented closed curve C. Cex2dx+(siny4x2)dy\oint _ { C } e ^ { x ^ { 2 } } d x + \left( \sin y - 4 x ^ { 2 } \right) d y , where C is the boundary of the region bounded by the parabolas y=x2y = x ^ { 2 } and x=y2x = y ^ { 2 } .

(Multiple Choice)
4.8/5
(33)

Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } for the given vector field F and the oriented surface S. In other words, find the flux of F across S. F(x,y,z)=9xi+3yj+6zk\mathbf { F } ( x , y , z ) = 9 x \mathbf { i } + 3 y \mathbf { j } + 6 z \mathbf { k } S is the cube with vertices (±1,±1,±1)S \text { is the cube with vertices } ( \pm 1 , \pm 1 , \pm 1 ) \text {. }

(Short Answer)
4.9/5
(40)

Use Stoke's theorem to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } F(x,y,z)=6yx2i+2x3j+6xyk\mathbf { F } ( x , y , z ) = 6 y x ^ { 2 } \mathbf { i } + 2 x ^ { 3 } \mathbf { j } + 6 x y \mathbf { k } C is the curve of intersection of the hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } and the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 oriented counterclockwise as viewed from above.

(Short Answer)
4.8/5
(36)

Let D be a region bounded by a simple closed path C in the xy. Then the coordinates of the centroid (xˉ,yˉ) of D are xˉ=12ACx2dy,yˉ=12ACy2dx( \bar { x } , \bar { y } ) \text { of } D \text { are } \bar { x } = \frac { 1 } { 2 A } \oint _ { C } x ^ { 2 } d y , \bar { y } = - \frac { 1 } { 2 A } \oint _ { C } y ^ { 2 } d x where A is the area of D. Find the centroid of the triangle with vertices (0, 0), ( 44 , 0) and (0, 88 ).

(Multiple Choice)
4.8/5
(34)

Use Stoke's theorem to evaluate SFdr.\iint _ { S } \mathbf { F } \cdot d r . F(x,y,z)=4zi+2xj+6yk\mathbf { F } ( x , y , z ) = 4 z \mathbf { i } + 2 x \mathbf { j } + 6 y \mathbf { k } C is the curve of intersection of the plane z = x + 9 and the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9

(Short Answer)
4.9/5
(32)

Find the curl of the vector field. F(x,y,z)=(x3z)i+(4x+y+5z)j+(x6y)k\mathbf { F } ( x , y , z ) = ( x - 3 z ) \mathbf { i } + ( 4 x + y + 5 z ) \mathbf { j } + ( x - 6 y ) \mathbf { k }

(Short Answer)
4.7/5
(39)

Find a parametric representation for the part of the sphere x2+y2+z2=64x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 64 that lies above the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } }

(Short Answer)
4.9/5
(38)

Find the work done by the force field F on a particle that moves along the curve C. F(x,y)=(5x+4y)i+5xyj\mathbf { F } ( x , y ) = ( 5 x + 4 y ) \mathbf { i } + 5 x y \mathbf { j } ; C:r(t)=2t2i+t2jC : \mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } + t ^ { 2 } \mathbf { j } , 0t10 \leq t \leq 1

(Multiple Choice)
4.9/5
(43)

Find the mass of the surface S having the given mass density. S is part of the plane x+y+3z=3x + y + 3 z = 3 in the first octant; the density at a point P on S is equal to the square of the distance between P and the xy-plane.

(Multiple Choice)
4.8/5
(35)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , that is, find the flux of F across S. F(x,y,z)=4xi+2yj+4k\mathbf { F } ( x , y , z ) = 4 x \mathbf { i } + 2 y \mathbf { j } + 4 \mathbf { k } ; S is the part of the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } between the planes z = 0 and z = 5; n points upward.

(Short Answer)
4.9/5
(39)

Use Green's Theorem to find the work done by the force F(x,y)=x(x+4y)i+4xy2j\mathbf { F } ( x , y ) = x ( x + 4 y ) \mathbf { i } + 4 x y ^ { 2 } \mathbf { j } in moving a particle from the origin along the x-axis to (1, 0) then along the line segment to (0, 1) and then back to the origin along the y-axis.

(Short Answer)
4.9/5
(25)

Find the exact value of Cxeyzds,\int _ { C } x e ^ { y z } d s , where C is the line segment from (0, 0, 0) to (1, 44 , 99 ).

(Short Answer)
4.8/5
(39)
Showing 101 - 120 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)