Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find a parametric representation for the part of the elliptic paraboloid x+y2+2z2=7x + y ^ { 2 } + 2 z ^ { 2 } = 7 that lies in front of the plane x = 0.

(Multiple Choice)
4.8/5
(38)

Let F be a vector field. Determine whether the expression is meaningful. If so, state whether the expression represents a scalar field or a vector field. curl (div F)

(Short Answer)
4.8/5
(45)

Evaluate Cxy4dS\int _ { C } x y ^ { 4 } d S where C is the right half of the circle x2+y2=9x ^ { 2 } + y ^ { 2 } = 9

(Multiple Choice)
4.8/5
(43)

A thin wire is bent into the shape of a semicircle x2+y2=4,x>0x ^ { 2 } + y ^ { 2 } = 4 , x > 0 If the linear density is 44 , find the exact mass of the wire.

(Multiple Choice)
4.8/5
(42)

Find the gradient vector field of f(x,y,z)=xcos2y9zf ( x , y , z ) = x \cos \frac { 2 y } { 9 z }

(Short Answer)
4.8/5
(35)

Match the vector field with its plot. F(x,y)=xx2+y2iyx2+y2j\mathbf { F } ( x , y ) = \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { j }

(Multiple Choice)
4.8/5
(27)

Find the area of the surface S where S is the part of the surface x=yzx = y z that lies inside the cylinder y2+z2=16y ^ { 2 } + z ^ { 2 } = 16

(Short Answer)
4.9/5
(32)

Find an equation in rectangular coordinates, and then identify the surface. r(u,v)=6vi+(8uv)j+(u+6v)kr ( u , v ) = 6 v \mathbf { i } + ( 8 u - v ) \mathbf { j } + ( u + 6 v ) \mathbf { k }

(Short Answer)
4.9/5
(32)

Find a function f such that F=f\mathbf { F } = \nabla f , and use it to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the given curve C. F(x,y)=e6yi+(1+6xe6y)j,C:r(t)=teti+(1+t)j,0t1\mathbf { F } ( x , y ) = e ^ { 6 y } \mathbf { i } + \left( 1 + 6 x e ^ { 6 y } \right) \mathbf { j } , \quad C : \mathbf { r } ( t ) = t e ^ { t } \mathbf { i } + ( 1 + t ) \mathbf { j } , 0 \leq t \leq 1

(Short Answer)
4.9/5
(34)

Let r=xi+yj+zk and r=r\mathbf { r } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } \text { and } r = | \mathbf { r } | \text {. }  Find (8rr)\text { Find } \nabla \cdot ( 8 r \mathbf { r } )

(Short Answer)
4.8/5
(36)

The plot of a vector field is shown below. A particle is moved  from the point \text { from the point } (3,3)( 3,3 )  to \text { to } (0,0)( 0,0 ) . By inspection, determine whether the work done by F on the particle is positive, negative, or zero.  The plot of a vector field is shown below. A particle is moved  \text { from the point }   ( 3,3 )   \text { to }   ( 0,0 )  . By inspection, determine whether the work done by F on the particle is positive, negative, or zero.

(Short Answer)
5.0/5
(40)

Evaluate the surface integral. Round your answer to four decimal places. S3zdS\iint _ { S } 3 z d S S is surface x=y2+2z2,0y1,0z1x = y ^ { 2 } + 2 z ^ { 2 } , 0 \leq y \leq 1,0 \leq z \leq 1

(Multiple Choice)
5.0/5
(42)

Evaluate the line integral over the given curve C. C3y2zds\int _ { C } 3 y ^ { 2 } z d s ; C:r(t)=10ti+sin7tj+cos7tkC : \mathbf { r } ( t ) = 10 t \mathbf { i } + \sin 7 t \mathbf { j } + \cos 7 t \mathbf { k } , 0tπ20 \leq t \leq \frac { \pi } { 2 }

(Multiple Choice)
4.9/5
(32)

Find the work done by the force field F(x,y)=xsin(y)i+yj\mathbf { F } ( x , y ) = x \sin ( y ) \mathbf { i } + y \mathbf { j } on a particle that moves along the parabola y=x2 from (1,1) to (2,4)y = x ^ { 2 } \text { from } ( 1,1 ) \text { to } ( 2,4 )

(Multiple Choice)
4.8/5
(34)

Determine whether or not vector field is conservative. If it is conservative, find a function f such that F=f.\mathbf { F } = \nabla f . F(x,y,z)=35yze5xzi+7e5xzj+35xye5xzk\mathbf { F } ( x , y , z ) = 35 y z e ^ { 5 x z } \mathbf { i } + 7 e ^ { 5 x z } \mathbf { j } + 35 x y e ^ { 5 x z } \mathbf { k }

(Short Answer)
4.8/5
(34)

Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } for the given vector field F and the oriented surface S. In other words, find the flux of F across S. F(x,y,z)=xizj+yk, Sis the sphere x2+y2+z2=25\mathbf { F } ( x , y , z ) = x \mathbf { i } - z \mathbf { j } + y \mathbf { k } , \text { Sis the sphere } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25 in the first octant, with orientation toward the origin.

(Short Answer)
4.8/5
(38)

Determine whether F is conservative. If so, find a function f such that F=f.\mathbf { F } = \nabla f . . F(x,y,z)=(6sinh2z)i+(3e5zcos3y)j+(12xcosh2z)k\mathbf { F } ( x , y , z ) = ( 6 \sinh 2 z ) \mathbf { i } + \left( 3 e ^ { 5 z } \cos 3 y \right) \mathbf { j } + ( 12 x \cosh 2 z ) \mathbf { k }

(Short Answer)
4.8/5
(46)
Showing 121 - 137 of 137
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)