Exam 21: Parameters, Coordinates, Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let v1=2i5j+k\vec { v } _ { 1 } = 2 \vec { i } - 5 \vec { j } + \vec { k } and v2=5i+j+k\vec { v } _ { 2 } = 5 \vec { i } + \vec { j } + \vec { k } Find a vector which is perpendicular to v1\vec { v } _ { 1 } and v2\vec { v } _ { 2 } to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both v1\vec { v } _ { 1 } and v2\vec { v } _ { 2 } .Express your answer in the form Ax+By+Cz=DA x + B y + C z = D

(Essay)
4.9/5
(40)

Consider the change of variables x = s + 3t, y = s - 2t. Let R be the region bounded by the lines 2x + 3y = 1, 2x + 3y = 4, x - y = -3, and x - y = 2.Find the region T in the st-plane that corresponds to region R. Use the change of variables to evaluate R2x+3ydA\int _ { R } 2 x + 3 y d A .

(Short Answer)
4.8/5
(30)

Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4). Let P be the plane containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder). In each case, give a parameterization (x(θ),y(θ),z(θ))( x ( \theta ) , y ( \theta ) , z ( \theta ) ) and specify the range of values your parameters must take on. (i)the circle in which the cylinder, S, cuts the plane, P. (ii)the surface of the cylinder S.

(Essay)
4.7/5
(32)
Showing 21 - 23 of 23
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)