Exam 21: Parameters, Coordinates, Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the parametric equation of the plane through the point (-4, 2, 4)and parallel to the lines r(t)=(12t)i+(5+2t)j+(34t)k\vec { r } ( t ) = ( 1 - 2 t ) \vec { i } + ( 5 + 2 t ) \vec { j } + ( 3 - 4 t ) \vec { k } and s(t)=(34t)i+4tj+(42t)k\vec { s } ( t ) = ( 3 - 4 t ) \vec { i } + 4 t \vec { j } + ( 4 - 2 t ) \vec { k } Select all that apply.

Free
(Multiple Choice)
4.9/5
(30)
Correct Answer:
Verified

A, C, E

Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+4tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 4 t \vec { k } Does it contain the x-axis?

Free
(True/False)
4.8/5
(40)
Correct Answer:
Verified

False

Compute S(zi+xj+yk)dA\int _ { S } ( z \vec { i } + x \vec { j } + y \vec { k } ) \cdot \overrightarrow { d A } , where S is oriented in the positive j\vec { j } direction and given, for 0 \le s \le 1, 0 \le t \le 2, by x = s, y = t2, z =8 t.

Free
(Short Answer)
4.7/5
(40)
Correct Answer:
Verified

0

Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (2, 0, 7). Find the xyz-equation of the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder).

(Essay)
4.8/5
(33)

Consider the plane r(s,t)=(2+s4t)i+(5s+4t)j+(64ts)k\vec { r } ( s , t ) = ( 2 + s - 4 t ) \vec { i } + ( 5 - s + 4 t ) \vec { j } + ( 6 - 4 t - s ) \vec { k } Does it contain the point (1, 6, -1)?

(True/False)
4.8/5
(33)

Find parametric equations for the cylinder 49x2+5y2=245,7z549 x ^ { 2 } + 5 y ^ { 2 } = 245 , - 7 \leq z \leq 5

(Multiple Choice)
4.7/5
(40)

Let F=x(1+z)i+7y(1+z)j { \vec { F } } = x ( 1 + z ) \vec { i } + 7 y ( 1 + z ) \vec { j } Show that the parametric surface S given by x = s cos t, y = s sin t, z = s, for 1 \le s \le 2, 0 \le t \le 2 π\pi , oriented downward can also be written as the surface z=x2+y2,1z2z = \sqrt { x ^ { 2 } + y ^ { 2 } } , 1 \leq z \leq 2 . Which of the following iterated integrals calculates the flux of F\vec { F } across S? Select all that apply.

(Multiple Choice)
4.8/5
(43)

Find parametric equations for the cylinder y2+z2=49y ^ { 2 } + z ^ { 2 } = 49

(Multiple Choice)
4.8/5
(34)

Let R be the region in the first quadrant bounded between the circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the two axes.Then R(x2+y2)dA=π8\int _ { R } \left( x ^ { 2 } + y ^ { 2 } \right) d A = \frac { \pi } { 8 } Let Rˉ\bar { R } be the region in the first quadrant bounded between the ellipse 25x2+9y2=125 x ^ { 2 } + 9 y ^ { 2 } = 1 and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral x(75x2+27y2)dA\int _ { x } \left( 75 x ^ { 2 } + 27 y ^ { 2 } \right) d A

(Essay)
4.8/5
(34)

Using cylindrical coordinates, find parametric equations for the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 Select all that apply.

(Multiple Choice)
4.9/5
(30)

Consider the plane r(s,t)=(3+s5t)i+(5s+5t)j+(510t+s)k\vec { r } ( s , t ) = ( 3 + s - 5 t ) \vec { i } + ( 5 - s + 5 t ) \vec { j } + ( 5 - 10 t + s ) \vec { k } Find a normal vector to the plane.

(Multiple Choice)
4.7/5
(46)

Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (4, 0, 7). Find two unit vectors u\vec { u } and v\vec { v } in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other.

(Essay)
4.9/5
(35)

The following equations represent a curve or a surface.Select the best geometric description. (Note: ρ\rho , φ\varphi , θ\theta are spherical coordinates; r, θ\theta , z are cylindrical coordinates.)

(Multiple Choice)
4.8/5
(35)

Let F=x(1+z)i+2y(1+z)j{ \vec { F } } = x ( 1 + z ) \vec { i } + 2 y ( 1 + z ) \vec { j } Find the flux of F\vec { F } across the parametric surface S given by x = s cos t, y = s sin t, z = s, for 1 \le s \le 2, 0 \le t \le 2 π\pi , oriented downward.

(Essay)
4.9/5
(39)

Let v1=2i5j+k\vec { v } _ { 1 } = 2 \vec { i } - 5 \vec { j } + \vec { k } and v2=5i+j+k\vec { v } _ { 2 } = 5 \vec { i } + \vec { j } + \vec { k } Find a parametric equation for the plane through the point (1, 2, -1)and containing the vectors v1\vec { v } _ { 1 } and v2\vec { v } _ { 2 } Select all that apply.

(Multiple Choice)
4.8/5
(35)

Let F=xi+5yj+zk{ \vec { F } } = x \vec { i } + 5 y \vec { j } + z \vec { k } and S be parametric surface r(s,t)=si+tj+(4s+t4)k,0s1,0t2\vec { r } ( s , t ) = s \vec { i } + t \vec { j } + ( 4 s + t - 4 ) \vec { k } , \quad 0 \leq s \leq 1,0 \leq t \leq 2 oriented upward. Use the formula for a flux integral over a parametric surface to find SFdA\int _ { S } \vec { F } \cdot d \vec { A } .

(Short Answer)
4.9/5
(32)

Find parametric equations for the sphere (x4)2+(y+4)2+(z8)2=16( x - 4 ) ^ { 2 } + ( y + 4 ) ^ { 2 } + ( z - 8 ) ^ { 2 } = 16

(Essay)
4.9/5
(26)

Consider the change of variables x = s + 4t, y = s - 5t. Find the absolute value of the Jacobian (x,y)(s,t)\left| \frac { \partial ( x , y ) } { \partial ( s , t ) } \right| .

(Short Answer)
4.9/5
(34)

Compute the flux of the vector field H=yi+2zj\overrightarrow { \vec { H } } = \vec { y } i + 2 z \vec { j } over the surface S, which is oriented upward and given, for 0 \le s \le 1, 0 \le t \le 2 by x=s+t2,y=s2,z=4tx = s + t ^ { 2 } , y = s ^ { 2 } , z = 4 t

(Short Answer)
4.9/5
(40)

Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+4tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 4 t \vec { k } Does it contain the point (0, -2, 0)?

(True/False)
4.8/5
(33)
Showing 1 - 20 of 23
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)