Exam 19: Flux Integrals and Divergence

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If F\vec { F} is a constant vector field and S1 and S2 are oriented rectangles with areas 3 and 15 respectively, both orientated with the vector i,\overrightarrow { { i } } , is it true that S2FdA=5S1FdA\int _ { S _ { 2 } } \vec { F } \cdot \vec { d A } = 5 \oint _ { S _ { 1 } } \vec { F } \cdot \vec { d A } ?

Free
(True/False)
4.8/5
(29)
Correct Answer:
Verified

False

Suppose S is a disk of radius 4 in the plane x + z = 0 centered at (0, 0, 0)oriented "upward".Calculate the flux of F=4i+5j5k { \vec { F } } = 4 \vec { i } + 5 \vec { j } - 5 \vec { k } through S.

Free
(Essay)
4.8/5
(30)
Correct Answer:
Verified

8π2- 8 \pi \sqrt { 2 }

Compute the flux integral of the vector field G=6yi+2xj+6xyzk\vec { G } = - 6 y \vec { i } + 2 x \vec { j } + 6 x y z \vec { k } through the square 0y2,0z20 \leq y \leq 2,0 \leq z \leq 2 in the yz-plane, oriented so that the normal vector points in the direction of the x-axis.

Free
(Short Answer)
4.8/5
(35)
Correct Answer:
Verified

-24

Let S be the sphere of radius 4 centered at the origin, oriented outward. Find n\vec { n } , the unit normal vector to S in the direction of orientation.

(Multiple Choice)
4.8/5
(38)

Explain why it is impossible to give the Möbius strip a continuous orientation.

(Essay)
5.0/5
(36)

If F=4G\vec{F}=-4 \vec{G} and S is an oriented surface, then SFdA=4SGdA\int _ { S } \vec { F } \cdot \vec { d A } = - 4 \int _ { S } \vec { G } \cdot \vec { d A } .

(True/False)
4.8/5
(31)

Let F=ai+bj+ck { \vec { F } } = a \vec { i } + b \vec { j } + c \vec { k } be a constant vector field and S be an oriented surface. Show that SFdA(a2+b2+c2)( Area of S)\int _ { S } \vec { F } \cdot \vec { d A } \leq \left( \sqrt { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } \right) ( \text { Area of } S )

(Essay)
4.8/5
(33)

If SFdA=0\int_{S} \vec{F} \cdot \overrightarrow{d A}=0 , then F\vec{F} is perpendicular to the surface S at every point.

(True/False)
4.9/5
(26)

Let F=yi+xj { \vec { F } } = y \vec { i } + x \vec { j } .Write down an iterated integral that computes the flux of F\vec { F } through S, where S is the part of the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 with x \ge 0, y \ge 0, 0 \le z \le 4, bounded between the planes y = 0 and y = x, oriented outward.

(Multiple Choice)
4.9/5
(35)

Calculate the flux of F=5i+2j2xk { \vec { F } } = 5 \vec { i } + 2 \vec { j } - 2 x \vec { k } through the plane rectangle z= 1, 0 \le x \le 5, 0 \le y \le 2, oriented downward.

(Short Answer)
4.9/5
(35)

Calculate the flux of F=5i+5j2xk\vec { F } = 5 \vec { i } + 5 \vec { j } - 2 x \vec { k } through the plane rectangle y = 1, 0 \le x \le 1, 0 \le z \le 3, oriented in the negative y-direction.

(Short Answer)
4.8/5
(39)

Compute the flux of the vector field F=(x4y)i+(4y2z)j+5xk { \vec { F } } = ( x - 4 y ) \vec { i } + ( 4 y - 2 z ) \vec { j } + 5 x \vec { k } through the surface S, where S is the part of the plane z = x + 2y above the rectangle 0x2,0y30 \leq x \leq 2,0 \leq y \leq 3 oriented upward.

(Short Answer)
4.9/5
(32)

If the surface area of surface S1 is larger than the surface area of surface S2, then S1FdAS2FdA\int _ { S _ { 1 } } \vec { F } \cdot d \vec { A } \geq \int _ { S _ { 2 } } \vec { F } \cdot d \vec { A } .

(True/False)
4.7/5
(36)

Calculate the flux of F=3i+5j6k\vec{F}=3 \vec{i}+5 \vec{j}-6 \vec{k} through a surface of area 3 lying in the plane 2x + 5y + 5z = 10, oriented away from the origin.

(Essay)
4.8/5
(38)

Let F=xi+yj(x2+y2)3/2\vec { F } = \frac { x \vec { i } + y \vec { j } } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } } . True or False: The flux of F\vec { F } through any cylinder C (with x2+y2=R2,0z1x ^ { 2 } + y ^ { 2 } = R ^ { 2 } , 0 \leq z \leq 1 )does not depend on the radius R.

(True/False)
4.8/5
(34)

Evaluate SFdA\int _ { S } \vec { F } \cdot \vec { d A } , where F=xi+6yj { \vec { F } } = x \vec { i } + 6 y \vec { j } and S is the part of the cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 with x \ge 0, y \le 0, 0 \ge z \le 2, oriented toward the z-axis.

(Essay)
4.8/5
(29)

A greenhouse is in the shape of the graph z=36x2y2z = 36 - x ^ { 2 } - y ^ { 2 } with the floor at z = 0.Suppose the temperature around the greenhouse is given by T=3x2+3y2+(z6)2T = 3 x ^ { 2 } + 3 y ^ { 2 } + ( z - 6 ) ^ { 2 } .Let H=T { \vec { H } } = - \nabla T be the heat flux density field. Calculate the total heat flux outward across the boundary wall of the greenhouse.

(Essay)
4.8/5
(36)

Let F=2i5j+4k\vec { F } = - 2 \vec { i } - 5 \vec { j } + 4 \vec { k } , and let S1 be a horizontal rectangle with corners at (0,0,1), (0,2,1), (3,0,1)and (3,2,1), oriented upward; S2 a rectangle parallel to the xz-plane, with corners at (1,3,1), (2,3,1), (1,3,5)and (2,3,5), oriented in the positive y-direction, and S3 a rectangle parallel to the yz-plane, with corners at (1,2,1), (1,4,1), (1,2,5)and (1,4,5), oriented in the negative x-direction. Arrange S1FdA\int _ { S _ { 1 } } \vec { F } \cdot \overrightarrow { d A } , S2FdA\int_{S_{2}} \vec{F} \cdot \overrightarrow{d A} and S3FdA\int _ { S _ { 3 } } \vec { F } \cdot \overrightarrow { d A } in ascending order.

(Essay)
4.9/5
(35)

Calculate the flux of F=(x2+z2)yj { \vec { F } } = \left( x ^ { 2 } + z ^ { 2 } \right) y \vec { j } through the disk x2+z225x ^ { 2 } + z ^ { 2 } \leq 25 on the plane y=5y = 5 , oriented in the positive y-direction.

(Essay)
4.8/5
(37)

Calculate the flux of F=(x2+z2)yj { \vec { F } } = \left( x ^ { 2 } + z ^ { 2 } \right) y \vec { j } , through the plane rectangle y = 4, 0 \le x \le 4, 0 \le z \le 5, oriented in the positive y-direction.

(Essay)
4.8/5
(32)
Showing 1 - 20 of 52
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)