Exam 18: Line Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Consider the two-dimensional vector field F(x,y)=4yi+2xj\vec { F } ( x , y ) = - 4 y \vec { i } + 2 x \vec { j } Write down parameterizations of the three line segments C1, C2, and C3 shown in the figure below.  Consider the two-dimensional vector field  \vec { F } ( x , y ) = - 4 y \vec { i } + 2 x \vec { j }  Write down parameterizations of the three line segments C<sub>1</sub>, C<sub>2</sub>, and C<sub>3</sub> shown in the figure below.   Use your parameterizations to compute the line integral  \int _ { C _ { 3 } + C _ { 2 } - C _ { 1 } } \vec { F } \cdot d \vec { r }  by finding  \int_{G_{1}} \vec{F} \cdot d \vec{r}, \int_{C_{2}} \vec{F} \cdot d \vec{r}  and  \int _ { C _ { 3 } } \vec { F } \cdot d \vec { r } Use your parameterizations to compute the line integral C3+C2C1Fdr\int _ { C _ { 3 } + C _ { 2 } - C _ { 1 } } \vec { F } \cdot d \vec { r } by finding G1Fdr,C2Fdr\int_{G_{1}} \vec{F} \cdot d \vec{r}, \int_{C_{2}} \vec{F} \cdot d \vec{r} and C3Fdr\int _ { C _ { 3 } } \vec { F } \cdot d \vec { r }

Free
(Essay)
4.8/5
(38)
Correct Answer:
Verified

C3+c2c1Fdr=6\int _ { C _ { 3 } + c _ { 2 } - c _ { 1 } } \vec { F } \cdot d \vec { r } = - 6 .

Find, by direct computation, the line integral of yixjy \vec { i } - x \vec { j } around the circle r(t)=costi+sintj,0t2π\vec { r } ( t ) = \cos t \vec { i } + \sin t \vec { j } , 0 \leq t \leq 2 \pi

Free
(Essay)
4.9/5
(38)
Correct Answer:
Verified

2π- 2 \pi

Let C be the curve described by r(t)\vec { r } ( t ) .If the angle between F(t)\vec { F } ( t ) and r(t)\vec { r } ^ { \prime } ( t ) is less than π\pi /2, then CFdr0\int _ { C } \vec { F } \cdot \overline { d r } \geq 0

Free
(True/False)
5.0/5
(41)
Correct Answer:
Verified

True

The following table gives values of a function f(x, y).The table reflects the properties of the function, which is differentiable and defined for all (x, y). x y 1 2 3 4 5 6 7 8 9 10 1 7 8 4 3 8 2 1 1 5 9 2 5 9 7 11 7 3 1 4 2 10 3 6 8 14 11 10 5 13 13 12 14 4 11 15 20 22 25 24 21 21 15 12 5 17 25 30 31 32 35 37 40 35 32 6 25 30 34 30 29 26 15 14 12 9 7 39 42 51 55 50 49 47 45 35 36 8 26 21 19 24 28 27 30 33 45 39 9 49 50 55 62 69 71 60 54 49 47 10 65 70 64 6 63 49 42 41 40 38 Let F=f\vec{F}=\nabla f and G=6Fˉ.\vec { G } = 6 \overline { \bar { F } } . Find CGdr\int _ { C } \vec { G } \cdot d \vec { r } if C consists of line segments connecting (1,1), (1,10), (5,6), and (9,8)in that order.Explain your reasoning.

(Essay)
4.8/5
(40)

Let F=3yi+3xj\vec{F}=-3 y \vec{i}+3 x \vec{j} and let Ca be the circle x2 + y2 = a2 traversed counterclockwise. Find c0Fdr\int _ { c _ { 0 } } \vec { F } \cdot d \vec { r }

(Essay)
4.8/5
(28)

Let F=(9x2+6ycos(xy))i+(2y+6xcos(xy))j\vec { F } = \left( 9 x ^ { 2 } + 6 y \cos ( x y ) \right) \vec { i } + ( 2 y + 6 x \cos ( x y ) ) \vec { j } . Calculate CFdr\int_{C} \overline{\vec{F}} \cdot \overline{d r} where C is the curve shown below.  Let  \vec { F } = \left( 9 x ^ { 2 } + 6 y \cos ( x y ) \right) \vec { i } + ( 2 y + 6 x \cos ( x y ) ) \vec { j }  . Calculate  \int_{C} \overline{\vec{F}} \cdot \overline{d r}  where C is the curve shown below.

(Short Answer)
4.8/5
(38)

Let F=x3i+(x+sin3y)j\vec { F } = x ^ { 3 } \vec { i } + \left( x + \sin ^ { 3 } y \right) \vec { j } (a)Find the line integral C1Fdr\int _ { C _ { 1 } } \vec { F } \cdot d \vec { r } , where C1 is the line from (0, 0)to ( π\pi , 0). (b)Evaluate the double integral R1dA\int _ { R } 1 d A where R is the region enclosed by the curve y = sin x and the x-axis for 0 \le x \le π\pi .What is the geometric meaning of this integral? (c)Use Green's Theorem and the result of part (a)to find c2Fdr\int _ { c _ { 2 } } \vec { F } \cdot d \vec { r } where C2 is the path from (0, 0)to ( π\pi , 0)along the curve y = sin x.

(Essay)
4.7/5
(45)

Consider the vector field F=(Ax+By)i+(Bx+Cy)j\vec { F } = ( A x + B y ) \vec { i } + ( B x + C y ) \vec { j } for certain constants A, B and C. Find the line integral C1Fdr\int _ { C _ { 1 } } \vec { F } \cdot d \vec { r } , where C1 is the curve x=et(t2)+6t,y=sin(π4t),0t2x = e ^ { t ( t - 2 ) } + 6 t , y = \sin \left( \frac { \pi } { 4 } t \right) , 0 \leq t \leq 2

(Essay)
4.8/5
(35)

Find CFdr\int_{C} \vec{F} \cdot d \vec{r} where F=(x+z)i+6zj+6yk\vec{F}=(x+z) \vec{i}+6 z \vec{j}+6 y \vec{k} and C is the line from the point (2, 4, 4)to the point (0, 6, -8).

(Short Answer)
4.9/5
(32)

Evaluate c2xi+(4x+y)j\int _ { - c } - 2 x \vec { i } + ( 4 x + y ) \vec { j } , where C is the triangular path from (0, 0)to (1, 1)to (0, 1)to (0, 0).

(Short Answer)
5.0/5
(34)

Let F\vec{F} be a conservative vector field with potential function g satisfying g(0, 0)= -5.Let C1 be the line from (0, 0)to (2, 1), C2 the path parameterized by r(t)=(2+2sint)i+costj,0tπ\vec { r } ( t ) = ( 2 + 2 \sin t ) \vec { i } + \cos t \vec { j } , \quad 0 \leq t \leq \pi and C3 the path parameterized by r(t)=(t+2)i+(t2t+1)j,0t2\vec { r } ( t ) = ( t + 2 ) \vec { i } + \left( t ^ { 2 } - t + 1 \right) \vec { j } , 0 \leq t \leq 2 Suppose that C1Fdr=5,C2Fdr=3\int _ { C _ { 1 } } \vec { F } \cdot d \vec { r } = 5 , \int _ { C _ { 2 } } \vec { F } \cdot d \vec { r } = - 3 and C3Fdr=3\int _ { C _ { 3 } } \vec { F } \cdot d \vec { r } = - 3 Evaluate g(2, -1).

(Short Answer)
4.8/5
(46)

Let C be the circle in space with the parameterization r(t)=costi+sintk,0t2π\vec { r } ( t ) = \cos t \vec { i } + \sin t \vec { k } , \quad 0 \leq t \leq 2 \pi Evaluate CFdr\int_{C} \vec{F} \cdot d \vec{r} where F=2zey2i+sin(x2+y2+z2)j+x(y21)k\vec { F } = 2 z e ^ { y ^ { 2 } } \vec { i } + \sin \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \vec { j } + x \left( y ^ { 2 } - 1 \right) \vec { k }

(Essay)
4.7/5
(33)

Let F=(2+8xe4(x2+y2))i+(8ye4(x2+y2))j\vec { F } = \left( 2 + 8 x e ^ { 4 \left( x ^ { 2 } + y ^ { 2 } \right) } \right) \vec { i } + \left( 8 y e ^ { 4 \left( x ^ { 2 } + y ^ { 2 } \right) } \right) \vec { j } Find a potential function for F\vec{F}

(Essay)
4.9/5
(38)

Let F(x,y)\vec { F } ( x , y ) be the vector field F=(12x2+2x)j\vec{F}=\left(12 x^{2}+2 x\right) \vec{j} Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } using Green's theorem, if C is the unit circle traveled counterclockwise.

(Essay)
4.9/5
(30)

Let F(x,y)\vec { F } ( x , y ) be the vector field F=(6x2+4x)j\vec{F}=\left(6 x^{2}+4 x\right) \vec{j} Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } where C is the line from (0, 0)to (4, 4).

(Short Answer)
4.8/5
(34)

Consider the vector field F=(Ax+By)i+(Bx+Cy)j\vec { F } = ( A x + B y ) \vec { i } + ( B x + C y ) \vec { j } for certain constants A, B and C. Use the definition of the line integral to evaluate CFdr\int_{C} \vec{F} \cdot d \vec{r} , where C is the line from (1, 0)to (11, 1).

(Essay)
4.9/5
(31)

Calculate the line integral of F=(3y+x)i+2xj\vec{F}=(-3 y+x) \vec{i}+2 x \vec{j} along the straight line from (3, -3)to (3, 0).

(Short Answer)
4.7/5
(39)

Let F=(3x2+y4sinx)i+(4y3cosx+z)jyk\vec{F}=\left(3 x^{2}+y^{4} \sin x\right) \vec{i}+\left(4 y^{3} \cos x+z\right) \vec{j}-y \vec{k} Is the value of the line integral of F\vec{F} along any loop zero?

(Multiple Choice)
4.7/5
(33)

Let F=gradf\vec{F}=\operatorname{grad} f , where f(x,y)=ln(2x2+3y2+1)f ( x , y ) = \ln \left( 2 x ^ { 2 } + 3 y ^ { 2 } + 1 \right) (a)Evaluate the line integral CFdr\int _ { C } \vec { F } \cdot \overline { d r } , where C is the line from (0, 0)to (2, -4). (b)Do you expect the line integral of F\vec{F} along the parabola y = x2-4x, 0 \le x \le 2 to equal to the answer to (a)?

(Short Answer)
4.8/5
(32)

Let F=(4x3y6sinx)i+(6y5cosx+4z)j+4yk\vec{F}=\left(4 x^{3}-y^{6} \sin x\right) \vec{i}+\left(6 y^{5} \cos x+4 z\right) \vec{j}+4 y \vec{k} Show that F\vec{F} is a gradient field by finding its potential function.

(Essay)
4.9/5
(39)
Showing 1 - 20 of 78
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)