Exam 17: Parameterization and Vector Fields

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

An object moves with constant velocity in 3-space.It passes through (4, 0, 1)at time t = 1 and through (13, 6, -11)at time t = 4.Find its velocity vector.

Free
(Essay)
4.8/5
(37)
Correct Answer:
Verified

v=3i+2j4k\vec { v } = 3 \vec { i } + 2 \vec { j } - 4 \vec { k }

Write down a parameterization of the line through the points (2, 2, 4)and (6, 4, 2).Select all that apply.

Free
(Multiple Choice)
4.8/5
(35)
Correct Answer:
Verified

A, D, E

Are the lines parallel? l1:x=2t+5,y=3t+3,z=4t2l _ { 1 } : x = 2 t + 5 , y = 3 t + 3 , z = - 4 t - 2 l2:x=5t+1,y=2t4,z=11t+7l _ { 2 } : x = 5 t + 1 , y = 2 t - 4 , z = 11 t + 7

Free
(True/False)
4.9/5
(35)
Correct Answer:
Verified

False

Match the surface with its parameterization below. Match the surface with its parameterization below.

(Multiple Choice)
5.0/5
(35)

If a particle moves with constant speed, the path of the particle must be a line.

(True/False)
4.9/5
(41)

Find parametric equations for the cylinder 49x2+11y2=539,7z1149 x ^ { 2 } + 11 y ^ { 2 } = 539 , - 7 \leq z \leq 11

(Multiple Choice)
4.9/5
(33)

Two particles p1 and p2 are moving in the plane, with p1 moving vertically upward from initial point (0,0)and p2 moving around the unit circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 with initial point (0, 1)in the counter-clockwise direction. (a)Choose parameterizations for p1 and p2 so that the two particles collide at the point of intersection of their paths. (b)If the sum of the speeds of these two particles is greater than 3 at the time of collision, then the two particles combine to become one.Will this happen with your chosen parameterization?

(Essay)
4.8/5
(36)

Let v1=2i4j+k\vec { v } _ { 1 } = 2 \vec { i } - 4 \vec { j } + \vec { k } and v2=4i+j+k\vec { v } _ { 2 } = 4 \vec { i } + \vec { j } + \vec { k } Find a vector which is perpendicular to v1\vec { v } _ { 1 } and v2\vec { v } _ { 2 } to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both v1\vec { v } _ { 1 } and v2\vec { v } _ { 2 } .Express your answer in the form Ax+By+Cz=DA x + B y + C z = D

(Essay)
4.7/5
(30)

Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+4tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 4 t \vec { k } Does it contain the y-axis?

(True/False)
4.8/5
(36)

Suppose z = f(x, y), f(1, 3)= 5 and f(1,3)=4i+5j\nabla f ( 1,3 ) = 4 \vec { i } + 5 \vec { j } the vector 4i+5j+k- 4 \vec { i } + 5 \vec { j } + \vec { k } is perpendicular to the graph of f(x, y)at the point (1, 3).

(True/False)
4.9/5
(34)

Consider the curve r(t)=(2t2+1)i+(t22)j+tk\vec { r } ( t ) = \left( 2 t ^ { 2 } + 1 \right) \vec { i } + \left( t ^ { 2 } - 2 \right) \vec { j } + t \vec { k } Does it pass through the point (1, -2, 0)?

(True/False)
4.9/5
(38)

Consider the plane r(s,t)=(4+s4t)i+(5s+4t)j+(64ts)k\vec { r } ( s , t ) = ( - 4 + s - 4 t ) \vec { i } + ( 5 - s + 4 t ) \vec { j } + ( 6 - 4 t - s ) \vec { k } Does it contain the point (-7, 8, -7)?

(True/False)
4.8/5
(34)

Find a parameterization for the circle of radius 4 in the xz-plane, centered at the point (3, 0, -5).Select all that apply.

(Multiple Choice)
4.9/5
(34)

Find parametric equations for the cylinder y2+z2=16y ^ { 2 } + z ^ { 2 } = 16

(Multiple Choice)
4.8/5
(30)

A vector field F(x,y)\vec { F } ( x , y ) is shown below.  A vector field  \vec { F } ( x , y )  is shown below.   Find  \vec { F } ( 0,1 ) Find F(0,1)\vec { F } ( 0,1 )

(Essay)
4.9/5
(30)

A child is sliding down a helical slide.Her position at time t after the start is given in feet by r=costi+sintj+(12t)k\vec { r } = \cos t \vec { i } + \sin t \vec { j } + ( 12 - t ) \vec { k } .The ground is the xy-plane. At time t = 2 π\pi , the child leaves the slide on the tangent to the slide at that point.What is the equation of the tangent line?

(Short Answer)
4.8/5
(30)

Find the parametric equation of the plane through the point (5, 2, 2)and parallel to the lines r(t)=(12t)i+(5+2t)j+(34t)k\vec { r } ( t ) = ( 1 - 2 t ) \vec { i } + ( 5 + 2 t ) \vec { j } + ( 3 - 4 t ) \vec { k } and s(t)=(34t)i+4tj+(42t)k\vec { s } ( t ) = ( 3 - 4 t ) \vec { i } + 4 t \vec { j } + ( 4 - 2 t ) \vec { k } Select all that apply.

(Multiple Choice)
4.8/5
(32)

The figure below shows the contour map of a function z = f(x, y).  The figure below shows the contour map of a function z = f(x, y).   Let  \vec{F}  be the gradient vector field of f, i.e.,  \vec{F}=\text { gradf }  Which of the vector fields show  \vec { F } ? Let F\vec{F} be the gradient vector field of f, i.e., F= gradf \vec{F}=\text { gradf } Which of the vector fields show F?\vec { F } ?

(Multiple Choice)
4.8/5
(31)

Consider the curve r(t)=(2t2+1)i+(t2+1)j+tk\vec { r } ( t ) = \left( 2 t ^ { 2 } + 1 \right) \vec { i } + \left( t ^ { 2 } + 1 \right) \vec { j } + t \vec { k } Does the curve lie on the parametric surface x=s2+t2,y=s2,z=t?x = s ^ { 2 } + t ^ { 2 } , y = s ^ { 2 } , z = t ?

(True/False)
4.9/5
(40)

Give parameterizations for a circle of radius 3 in 3-space perpendicular to the y-axis centered at (4, -2, 0).

(Multiple Choice)
4.9/5
(40)
Showing 1 - 20 of 86
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)