Exam 20: The Curl and Stokes Theorem

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the Divergence Theorem to find the flux of the vector field F=(y2x3z2y)i+(z2y+zx3)j+(x2z+yx)k { \vec { F } } = \left( y ^ { 2 } x - 3 z ^ { 2 } y \right) \vec { i } + \left( z ^ { 2 } y + z x ^ { 3 } \right) \vec { j } + \left( x ^ { 2 } z + y x \right) \vec { k } through the sphere x2 + y2 + z2 = 11 .

Free
(Essay)
4.9/5
(43)
Correct Answer:
Verified

45π\frac { 4 } { 5 } \pi

Suppose that curl F\vec {F } is not zero.True or false? If curl F\vec { F } is parallel to the X\mathcal { X } -axis for all x, y, and z and if C is a circle in the xy-plane, then the circulation of F\vec { F } around C is zero.

Free
(True/False)
4.9/5
(43)
Correct Answer:
Verified

True

Use the curl test to determine whether the following vector field is a gradient field. F=y3z2i+(4y2xz2+4yz3)j+(2xy3z+3y2z2)k\vec { F } = y ^ { 3 } z ^ { 2 } \vec { i } + \left( 4 y ^ { 2 } x z ^ { 2 } + 4 y z ^ { 3 } \right) \vec { j } + \left( 2 x y ^ { 3 } z + 3 y ^ { 2 } z ^ { 2 } \right) \vec { k }

Free
(Multiple Choice)
4.7/5
(33)
Correct Answer:
Verified

B

Let F=(2x2axz)i+(bx2+16)j+(x+cy)k\vec { F } = \left( - 2 x ^ { 2 } - a x z \right) \vec { i } + \left( b x ^ { 2 } + 16 \right) \vec { j } + ( x + c y ) \vec { k } be a smooth vector field with curlF(1,4,4)=3i+3j+8k\operatorname { curl } \overrightarrow { \vec { F } } ( 1 , - 4,4 ) = - 3 \vec { i } + 3 \vec { j } + 8 \vec { k } Determine the values of a, b and c.

(Short Answer)
4.8/5
(34)

(a)The vector field F=2xi+4yj+azk { \vec { F } } = 2 x \vec { i } + 4 y \vec { j } + a z \vec { k } has the property that the flux of F\vec {F } through any closed surface is 0.What is the value of the constant a? (b)The vector field G=(ay+bz)i+(2x+4z)j+(4x+cy)k\vec { G } = ( a y + b z ) \vec { i } + ( 2 x + 4 z ) \vec { j } + ( 4 x + c y ) \vec { k } has the property that the circulation of G\vec { G } around any closed curve is 0.What are the values of the constants a, b and c?

(Essay)
4.8/5
(39)

Which of the following vector fields has the following properties: 1)the largest value of its circulation density at (1,2,1)is 50 2)the largest value of its circulation density at (1,2,1)occurs around the direction 35i+45j\frac { 3 } { 5 } \vec { i } + \frac { 4 } { 5 } \vec { j }

(Multiple Choice)
4.8/5
(26)

On an exam, students are asked to find the line integral of F=2xyi+yzj+y2k { \vec { F } } = 2 x y \vec { i } + y z \vec { j } + y ^ { 2 } \vec { k } over the curve C which is the boundary of the upper hemisphere x2+y2+z2=22,z0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 ^ { 2 } , z \geq 0 oriented in a counter-clockwise direction when viewed from above.One student wrote: " curlF=2xj+2k\operatorname { curl } { \vec { F } } = - 2 x \vec { j } + 2 \vec { k } By Stokes' Theorem CFdr=S(2xj+2k)dA\int _ { C } \vec { F } \cdot \vec{ d r } = \int _ { S } ( - 2 x \vec { j } + 2 \vec { k } ) \cdot \vec { d A } where S is the hemisphere.Since div(2xj+2k)=0\operatorname { div } ( - 2 x \vec { j } + 2 \vec { k } ) = 0 by the Divergence Theorem S(2xj+2k)dA=W0dV=0\int _ { S } ( - 2 x \vec { j } + 2 \vec { k } ) \cdot \vec { d A } = \int _ { W } 0 d V = 0 where W is the solid hemisphere.Hence we have CFdr=0\int _ { C } \vec { F } \cdot \vec{ d r } = 0 " This answer is wrong.Which part of the student's argument is wrong? Select all that apply.

(Multiple Choice)
4.8/5
(32)

Let S be the surface of the upper part of the cylinder 4x2 + z2 = 1, z \ge 0, between the planes y = -1, y = 1, with an upward-pointing normal. (a)Evaluate the flux integral S(3xy2zi+7coszj+3k)dA\int _ { S } \left( - 3 x y ^ { 2 } z \vec { i } + 7 \cos z \vec { j } + 3 \vec { k } \right) \cdot \vec { d A } (b)Consider W, the solid region described by -1 \le y \le 1, 4x2 + z2 \le 1, z \ge 0.Evaluate Wdiv(3xy2zi+7coszj+3k)dV\int _ { W } \operatorname { div } \left( - 3 x y ^ { 2 } z \vec { i } + 7 \cos z \vec { j } + 3 \vec { k } \right) d V Does this contradict the Divergence Theorem? Explain.

(Essay)
4.8/5
(31)

Suppose a vector field G\vec { G } is always perpendicular to the normal vector at each point of a surface S.What is the value of Q˙G×dA?\dot { \mathrm { Q } } { \vec { G } } \times \vec { d A } ?

(Short Answer)
4.8/5
(31)

An oceanographic vessel suspends a paraboloid-shaped net below the ocean at depth of 12001200 feet, held open at the top by a circular metal ring of radius 2020 feet, with bottom 9090 feet below the ring and just touching the ocean floor.Set up coordinates with the origin at the point where the net touches the ocean floor and with z measured upward.  An oceanographic vessel suspends a paraboloid-shaped net below the ocean at depth of  1200  feet, held open at the top by a circular metal ring of radius  20  feet, with bottom  90  feet below the ring and just touching the ocean floor.Set up coordinates with the origin at the point where the net touches the ocean floor and with z measured upward.

(Multiple Choice)
4.7/5
(30)

If F=5yex2i+4xyeyj+4zcos(xy)k { \vec { F } } = 5 y e ^ { x ^ { 2 } }{\vec { i } } + 4 x y e ^ { y} \vec { j } + 4 z \cos ( x y ) \vec { k } find divF.\operatorname { div } \vec { F} .

(Multiple Choice)
4.8/5
(28)

Given curlF=10xyzi+(ay2z+2byz)j4z2k\operatorname { curl } { \vec { F } } = 10 x y z \vec { i } + \left( a y ^ { 2 } z + 2 b y z \right) \vec { j } - 4 z ^ { 2 } \vec { k } , find the values of the constants a and b, without knowing the expression of F\vec { F } .

(Essay)
4.8/5
(32)

Let F=rpr\vec { F } = \| \vec { r } \| ^ { p } \vec { r } , where p is a positive constant.Is there a value of p such that F\vec {F} is a divergence free vector field?

(True/False)
4.7/5
(30)

Let G\vec { G } be a smooth vector field with divG=3\operatorname { div } \vec { G } = 3 at every point in space.Find the exponent p in the following:  The flux of G out of any sphere of radius r1 The flux of G out of any sphere of radius r2=(r1r2)p\frac { \text { The flux of } \vec { G } \text { out of any sphere of radius } r _ { 1 } } { \text { The flux of } \vec { G } \text { out of any sphere of radius } r _ { 2 } } = \left( \frac { r _ { 1 } } { r _ { 2 } } \right) ^ { p }

(Essay)
4.9/5
(41)

You want to build a windmill at the origin that maximizes the circulation of the wind.The wind vector field at any point (x, y, z)in your coordinate world is given by F=(y+5z)i+(x2z)j+(2yx)k\vec { F } = ( y + 5 z ) \vec { i } + ( x - 2 z ) \vec { j } + ( 2 y - x ) \vec { k } (a)In which direction should you face the windmill to get maximum use from the wind? (b)What will be the strength of the circulation of the wind when you face it in this direction?

(Essay)
4.8/5
(30)

State the Divergence Theorem.

(Multiple Choice)
4.9/5
(38)

Let F=x(x2+4y2+3z2)3/2iy(x2+4y2+3z2)3/2jz(x2+4y2+3z2)3/2k\vec { F } = - \frac { x } { \left( x ^ { 2 } + 4 y ^ { 2 } + 3 z ^ { 2 } \right) ^ { 3 / 2 } } \vec { i } - \frac { y } { \left( x ^ { 2 } + 4 y ^ { 2 } + 3 z ^ { 2 } \right) ^ { 3 / 2 } } \vec { j } - \frac { z } { \left( x ^ { 2 } + 4 y ^ { 2 } + 3 z ^ { 2 } \right) ^ { 3 / 2 } } \vec { k } Is F\vec {F } a divergence free vector field?

(Short Answer)
4.7/5
(35)

Calculate curlHˉ\operatorname { curl } \overline { \bar { H } } where H=9xi8xyj+xz5k { \vec{ H } } = 9 x \vec { i } - 8 x y \vec { j } + x z ^ { 5 } \vec { k }

(Multiple Choice)
4.9/5
(29)

Let F=(y2+4xcosz))i+(z3)j+(z24xy)k\left. { \vec { F } } = \left( y ^ { 2 } + 4 x \cos z \right) \right) \vec { i } + \left( - z ^ { 3 } \right) \vec { j } + \left( z ^ { 2 } - 4 x y \right) \vec { k } Find the curl of F.\vec { F} .

(Essay)
4.9/5
(31)

Let G\vec { G } be a smooth vector field with curl G(0,0,0)=3i4j+4k\vec { G } ( 0,0,0 ) = - 3 \vec { i } - 4 \vec { j } + 4 \vec { k } Estimate the circulation around a circle of radius 0.01 in the yz plane, oriented counterclockwise when viewed from the positive x-axis.

(Essay)
4.9/5
(30)
Showing 1 - 20 of 84
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)