Exam 3: Introduction to Logic

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write the converse, inverse, or contrapositive of the statement as requested. - qp\mathrm { q } \rightarrow \sim \mathrm { p } Inverse

(Multiple Choice)
4.8/5
(36)

Let p represent a true statement and let q represent a false statement. Find the truth value of the given compound statement. - pq\sim \mathrm { p } \vee \mathrm { q }

(True/False)
4.9/5
(32)

When using a truth table, the statement pq\sim \mathrm { p } \vee \sim \mathrm { q } is equivalent to (pq)\sim ( \mathrm { p } \wedge \mathrm { q } ) .

(True/False)
4.7/5
(39)

 Let p represent 7<8q represent 2<5<6, and r represent 3<2. Decide whether the statement is true or false. \text { Let } p \text { represent } 7 < 8 \text {, } q \text { represent } 2 < 5 < 6 \text {, and } \mathbf { r } \text { represent } 3 < 2 \text {. Decide whether the statement is true or false. } - (pq)(rq)\sim ( \sim p \wedge \sim q ) \wedge (\sim r \wedge \sim q )

(True/False)
4.9/5
(32)

Write a logical statement representing the following circuit. Simplify when possible. -Write a logical statement representing the following circuit. Simplify when possible. -

(Short Answer)
4.8/5
(32)

The argument has a true conclusion. Identify the argument as valid or invalid. -Eric is older than Camille. Camille is older than Todd.\underline { \text {Camille is older than Todd.} } Todd is younger than Eric.

(Multiple Choice)
4.8/5
(34)

Construct a truth table for the statement. - (ps)(p(ts))\sim(\mathrm{p} \wedge \mathrm{s}) \rightarrow(\mathrm{p} \rightarrow(\sim t \wedge \mathrm{s}))

(Multiple Choice)
4.8/5
(34)

Decide whether the statement is true or false. -  For every real number p,p2 is positive and p<p2\text { For every real number } p , p ^ { 2 } \text { is positive and } p < p ^ { 2 } \text {. }

(True/False)
4.8/5
(48)

Construct a truth table for the statement. - (st)(ts)\sim(s \vee t) \wedge \sim(t \wedge s)

(Multiple Choice)
4.7/5
(28)

Determine whether the argument is valid or invalid. -The Rams will be in the playoffs if and only if Ozzie is an all-star. Mark loves the Rams or Ozzie is an all-star. Mark does not love the Rams. Therefore, the Rams will not be in the playoffs.

(Multiple Choice)
4.8/5
(35)

 When using a truth table, the statement qp is equivalent to pq\text { When using a truth table, the statement } q \rightarrow p \text { is equivalent to } p \rightarrow q \text {. }

(True/False)
4.8/5
(26)

 When using a truth table, the statement qp is equivalent to pq\text { When using a truth table, the statement } q \rightarrow p \text { is equivalent to } \sim p \rightarrow q \text {. }

(True/False)
4.7/5
(37)

Write a negation of the inequality. Do not use a slash symbol. - x<5x < 5

(Multiple Choice)
4.9/5
(36)

Decide whether the statement is true or false. -  For no real number y,y<10 and y>12\text { For no real number } \mathrm { y } , \mathrm { y } < 10 \text { and } \mathrm { y } > 12 \text {. }

(True/False)
4.9/5
(32)

Write a logical statement representing the following circuit. Simplify when possible. -Write a logical statement representing the following circuit. Simplify when possible. -

(Essay)
4.8/5
(38)

Use the method of writing each premise in symbols in order to write a conclusion that yields a valid argument. -All birds have wings. None of my pets are birds. All animals with wings can flap them.

(Multiple Choice)
4.7/5
(35)

Solve the problem. -Given that pq\mathrm { p } \vee \mathrm { q } is false, what can you conclude about the truth values of p\mathrm { p } and q\mathrm { q } ?

(Multiple Choice)
4.9/5
(35)

Construct a truth table for the statement. - p(pp)p \vee ( p \wedge \sim p )

(Multiple Choice)
5.0/5
(42)

Write a negation for the statement. -Not all people like football.

(Multiple Choice)
4.9/5
(26)

Use a truth table to determine whether the argument is valid. - \rightarrow

(Multiple Choice)
4.9/5
(36)
Showing 261 - 280 of 315
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)