Exam 3: Introduction to Logic

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write a negation of the inequality. Do not use a slash symbol. - x50x \geq - 50

(Multiple Choice)
4.7/5
(25)

Find the truth value of the statement. - 75=2 if and only if 11+2=147 - 5 = 2 \text { if and only if } 11 + 2 = 14

(True/False)
4.7/5
(38)

Tell whether the conditional statement is true or false. -Here F represents a false statement. F(5=8)\mathrm { F } \rightarrow ( 5 = 8 )

(True/False)
4.9/5
(42)

Use the method of writing each premise in symbols in order to write a conclusion that yields a valid argument. -Every man with a mind can think. A distracted man can't think. A man who is not distracted can apply himself.

(Multiple Choice)
4.9/5
(30)

 Write the negation of the conditional. Use the fact that the negation of pq is pq\text { Write the negation of the conditional. Use the fact that the negation of } p \rightarrow q \text { is } p \wedge \sim q \text {. } -If 7x+2y>67 x + 2 y > 6 , the answer is "Sea."

(Multiple Choice)
4.9/5
(29)

Solve the logic puzzle by using a grid. -The scores of a math test for five students were posted on the bulletin board. The students' names are Tom, Penny, Jim, John and Fred. Tom and Fred scored the same number of points. Penny did Not get the highest score. John's score was 5 points lower than Jim's. The scores were 69, 52, 94, 52 And 89. Which student received what score?

(Multiple Choice)
4.7/5
(40)

Decide whether the compound statement is true or false. The symbol for exclusive disjunction \vee represents "one or the other is true, but not both". - 8+4=203+5=138 + 4 = 20 \underline\vee 3 + 5 = 13

(True/False)
4.9/5
(31)

Construct a truth table for the statement. - (rs)(rs)(\mathrm{r} \rightarrow \sim \mathrm{s}) \rightarrow(\mathrm{r} \wedge \sim \mathrm{s})

(Multiple Choice)
4.8/5
(44)

Write a logical statement representing the following circuit. Simplify when possible. - p[(qr)p]\sim p \rightarrow [ ( q \wedge r ) \vee \sim p ]

(Essay)
4.9/5
(37)

Decide whether the statement is compound. -I'll go to Mexico or Costa Rica for my next vacation.

(Multiple Choice)
4.8/5
(40)

 Let p represent 7<8q represent 2<5<6, and r represent 3<2. Decide whether the statement is true or false. \text { Let } p \text { represent } 7 < 8 \text {, } q \text { represent } 2 < 5 < 6 \text {, and } \mathbf { r } \text { represent } 3 < 2 \text {. Decide whether the statement is true or false. } - (pq)\sim ( p \wedge q )

(True/False)
4.7/5
(35)

Determine if the argument is valid or a fallacy. Give a reason to justify answer. -If it is cold, then you need a coat. You do not need a coat\underline { \text {You do not need a coat} } It is not cold.

(Multiple Choice)
4.8/5
(39)

Determine whether the argument is valid or invalid. -If you are infected with the measles, then it can be transmitted. The results are grave and it cannot be transmitted. Therefore, if the results are not grave, then you are infected with the measles

(Multiple Choice)
4.9/5
(34)

 If p is false then the statement q(pq) must be true. \text { If } p \text { is false then the statement } q \rightarrow ( \sim p \vee q ) \text { must be true. }

(True/False)
4.9/5
(39)

 Let p represent 7<8q represent 2<5<6, and r represent 3<2. Decide whether the statement is true or false. \text { Let } p \text { represent } 7 < 8 \text {, } q \text { represent } 2 < 5 < 6 \text {, and } \mathbf { r } \text { represent } 3 < 2 \text {. Decide whether the statement is true or false. } - qr\sim q \wedge \sim r

(True/False)
4.9/5
(25)

Determine if the argument is valid or a fallacy. Give a reason to justify answer. -If it's Tuesday, then this must be Paris. Today is Wednesday.\underline { \text {Today is Wednesday.} } This cannot be Paris.

(Multiple Choice)
4.9/5
(34)

Solve the Sudoku. -Hard 8 6 7 5 9 8 3 8 9 5 2 3 9 6 1 5 4 9 8 3 2 6 7 7 9 6 3

(Essay)
4.8/5
(31)

Tell whether the conditional statement is true or false. - (8=124)(5>0)( 8 = 12 - 4 ) \rightarrow ( 5 > 0 )

(True/False)
4.8/5
(36)

Tell whether the conditional statement is true or false. -Here F represents a false statement. (2=2)F( 2 = 2 ) \rightarrow F

(True/False)
4.9/5
(28)

Let p represent a true statement, while q and r represent false statements. Find the truth value of the compound statement. - p( qr)\sim \mathrm { p} \vee ( \mathrm {~q} \wedge \sim \mathrm { r } )

(True/False)
4.8/5
(32)
Showing 81 - 100 of 315
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)