Exam 8: Integrals and Transcendental Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate the integral. - 0π/1212tan3xdx\int _ { 0 } ^ { \pi / 12 } 12 \tan 3 x d x

(Multiple Choice)
4.8/5
(38)

Find the derivative of y. - y=ln(sinh6x)y = \ln ( \sinh 6 x )

(Multiple Choice)
4.9/5
(40)

Solve the differential equation. - dydx=8y2x\frac { d y } { d x } = \frac { 8 y ^ { 2 } } { x }

(Multiple Choice)
4.8/5
(39)

Evaluate the integral. - cosxdx1+4sinx\int \frac { \cos x d x } { 1 + 4 \sin x }

(Multiple Choice)
4.8/5
(35)

Determine if the given function y = f(x) is a solution of the accompanying differential equation. - =- y=

(True/False)
4.9/5
(46)

Solve the problem. -The amount of alcohol in the bloodstream, A\mathrm { A } , declines at a rate proportional to the amount, that is, dAdt=kA\frac { \mathrm { dA } } { \mathrm { dt } } = - \mathrm { kA } . If k=0.5\mathrm { k } = 0.5 for a particular person, how long will it take for his alcohol concentration to decrease from 0.10%0.10 \% to 0.05%0.05 \% ? Give your answer to the nearest tenth of an hour.

(Multiple Choice)
4.9/5
(40)

Evaluate the integral in terms of natural logarithms. - 07/8dx1x2\int _ { 0 } ^ { 7 / 8 } \frac { d x } { 1 - x ^ { 2 } }

(Multiple Choice)
4.8/5
(33)

Solve the differential equation. - x2dydx=3yx ^ { 2 } \frac { d y } { d x } = 3 y

(Multiple Choice)
4.9/5
(29)

Rewrite the expression in terms of exponentials and simplify the results. - sinh(4lnx)\sinh ( 4 \ln x )

(Multiple Choice)
4.9/5
(37)

Evaluate the integral. - 9cosh(x2ln7)dx\int 9 \cosh \left( \frac { x } { 2 } - \ln 7 \right) d x

(Multiple Choice)
4.8/5
(41)

Determine if the given function y = f(x) is a solution of the accompanying differential equation. - +y= y=8+

(True/False)
4.9/5
(36)

A value of sinhx\sinh x or coshx\cosh x is given. Use the definitions and the identity cosh2xsinh2x=1\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1 to find the value of the other indicated hyperbolic function. - sinhx=815,sechx=\sinh x = \frac { 8 } { 15 } , \operatorname { sech } x =

(Multiple Choice)
4.8/5
(41)

Solve the initial value problem. - dydx=e4xcose4x,y(0)=0\frac { d y } { d x } = e ^ { 4 x } \cos e ^ { 4 x } , y ( 0 ) = 0

(Multiple Choice)
4.7/5
(38)

Determine if the given function y = f(x) is a solution of the accompanying differential equation. -Differential equation: y=e5x5yy ^ { \prime } = e ^ { - 5 x } - 5 y Initial condition: y(0)=0y ( 0 ) = 0 Solution candidate: y=5xe5xy = 5 x e ^ { - 5 x }

(True/False)
5.0/5
(40)

Evaluate the integral. - coshx7dx\int \cosh \frac { x } { 7 } d x

(Multiple Choice)
4.8/5
(37)

Evaluate the integral. - 23x2+1x3+3xdx\int _ { 2 } ^ { 3 } \frac { x ^ { 2 } + 1 } { x ^ { 3 } + 3 x } d x

(Multiple Choice)
4.8/5
(37)
Showing 161 - 176 of 176
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)