Exam 8: Integrals and Transcendental Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the initial value problem. - dydt=etsin(et7),y(ln7)=0\frac { d y } { d t } = e ^ { t } \sin \left( e ^ { t } - 7 \right) , y ( \ln 7 ) = 0

(Multiple Choice)
4.7/5
(36)

Provide an appropriate response. -A polynomial f(x)f ( x ) has a degree smaller than or equal to another polynomial g(x)g ( x ) . Does f=O(g)f = O ( g ) and does g=O(f)\mathrm { g } = \mathrm { O } ( \mathrm { f } ) ?

(Essay)
4.9/5
(43)

Solve the problem. -A certain radioactive isotope decays at a rate of 2%2 \% per 100 years. If tt represents time in years and y represents the amount of the isotope left then the equation for the situation is y=y0e0.0002ty = y 0 e ^ { - 0.0002 t } . In how many years will there be 89%89 \% of the isotope left?

(Multiple Choice)
4.9/5
(40)

Evaluate the integral. - log7xxdx\int \frac { \log 7 x } { x } d x

(Multiple Choice)
4.9/5
(32)

A value of sinhx\sinh x or coshx\cosh x is given. Use the definitions and the identity cosh2xsinh2x=1\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1 to find the value of the other indicated hyperbolic function. - coshx=135,x<0,cothx=\cosh x = \frac { 13 } { 5 } , x < 0 , \operatorname { coth } x =

(Multiple Choice)
4.8/5
(41)

Solve the differential equation. - dydx=8x7secy\frac { d y } { d x } = 8 x ^ { 7 } \sec y

(Multiple Choice)
5.0/5
(32)

Evaluate the integral. - 10xsechx2tanhx2dx\int 10 x \operatorname { sech } x ^ { 2 } \tanh x ^ { 2 } d x

(Multiple Choice)
4.9/5
(42)

Determine if the given function y = f(x) is a solution of the accompanying differential equation. - -y=2 y=+2x

(True/False)
4.7/5
(40)

Solve the problem. -Find the length of the segment of the curve y=12cosh2xy = \frac { 1 } { 2 } \cosh 2 x from x=0x = 0 to x=ln5x = \ln \sqrt { 5 } .

(Multiple Choice)
4.7/5
(40)

Evaluate the integral. - e2θ1+e2θdθ\int \frac { e ^ { 2 \theta } } { 1 + e ^ { 2 \theta } } d \theta

(Multiple Choice)
4.9/5
(33)

Verify the integration formula. - xcsch1xdx=x22csch1x+121+x2+C\int x \operatorname { csch } ^ { - 1 } x d x = \frac { x ^ { 2 } } { 2 } \operatorname { csch } ^ { - 1 } x + \frac { 1 } { 2 } \sqrt { 1 + x ^ { 2 } } + C

(True/False)
4.8/5
(41)

Express the value of the inverse hyperbolic function in terms of natural logarithms. - csch1(94)\operatorname { csch } ^ { - 1 } \left( \frac { 9 } { 4 } \right)

(Multiple Choice)
4.8/5
(33)

Determine if the given function y = f(x) is a solution of the accompanying differential equation. - +y= y=7+

(True/False)
4.9/5
(38)

Evaluate the integral in terms of an inverse hyperbolic function. - 565dx36+x2\int _ { \sqrt { 5 } } ^ { 6 \sqrt { 5 } } \frac { d x } { \sqrt { 36 + x ^ { 2 } } }

(Multiple Choice)
4.9/5
(33)

Evaluate the integral. - e1/x5x2dx\int \frac { \mathrm { e } ^ { 1 / x } } { 5 x ^ { 2 } } d x

(Multiple Choice)
4.8/5
(43)

Express the value of the inverse hyperbolic function in terms of natural logarithms. - sinh1(34)\sinh ^ { - 1 } \left( \frac { - 3 } { 4 } \right)

(Multiple Choice)
4.7/5
(34)

Evaluate the integral in terms of natural logarithms. - 47dxx29\int _ { 4 } ^ { 7 } \frac { d x } { \sqrt { x ^ { 2 } - 9 } }

(Multiple Choice)
4.9/5
(35)

A value of sinhx\sinh x or coshx\cosh x is given. Use the definitions and the identity cosh2xsinh2x=1\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1 to find the value of the other indicated hyperbolic function. - sinhx=34,cothx=\sinh x = \frac { 3 } { 4 } , \operatorname { coth } x =

(Multiple Choice)
4.9/5
(44)

Evaluate the integral in terms of natural logarithms. - 1e510dxx1+(lnx)2\int _ { 1 } ^ { e ^ { 5 } } \frac { 10 d x } { x \sqrt { 1 + ( \ln x ) ^ { 2 } } }

(Multiple Choice)
4.9/5
(31)

Find the derivative of y. - y=sech(5θ)(1lnsech(5θ))y = \operatorname { sech } ( 5 \theta ) ( 1 - \ln \operatorname { sech } ( 5 \theta ) )

(Multiple Choice)
4.7/5
(35)
Showing 61 - 80 of 176
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)