Exam 8: Integrals and Transcendental Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the slowest growing and the fastest growing functions as x→∞ . - y=x+7 y= y=+x y=

(Multiple Choice)
4.9/5
(39)

Evaluate the integral. - ln305sinh2(x2)dx\int _ { - \ln 3 } ^ { 0 } 5 \sinh ^ { 2 } \left( \frac { x } { 2 } \right) d x

(Multiple Choice)
4.8/5
(38)

Solve the problem. -The barometric pressure p\mathrm { p } at an altitude of h\mathrm { h } miles above sea level satisfies the differential equation dpdh=0.2p\frac { d p } { d h } = - 0.2 p . If the pressure at sea level is 29.9229.92 inches of mercury, find the barometric pressure at 29,000ft29,000 \mathrm { ft } .

(Multiple Choice)
4.9/5
(39)

Find the derivative of y with respect to the appropriate variable. - y=(18t)coth18ty = ( 1 - 8 t ) \operatorname { coth } ^ { - 1 } \sqrt { 8 t }

(Multiple Choice)
4.8/5
(40)

Evaluate the integral. - 0π/20sec25x5+tan5xdx\int _ { 0 } ^ { \pi / 20 } \frac { \sec ^ { 2 } 5 x } { 5 + \tan 5 x } d x

(Multiple Choice)
4.8/5
(33)

Evaluate the integral. - 0π/8(1+etan2x)sec22xdx\int _ { 0 } ^ { \pi / 8 } \left( 1 + e ^ { \tan 2 x } \right) \sec ^ { 2 } 2 x d x

(Multiple Choice)
4.7/5
(32)

Evaluate the integral. - ln2ln412etcoshtdt\int _ { \ln 2 } ^ { \ln 4 } 12 e ^ { t } \cosh t d t

(Multiple Choice)
4.8/5
(34)

Rewrite the expression in terms of exponentials and simplify the results. - 16cosh(lnx)+6sinh(lnx)16 \cosh ( \ln x ) + 6 \sinh ( \ln x )

(Multiple Choice)
4.8/5
(43)

Determine if the given function y = f(x) is a solution of the accompanying differential equation. - y=dt +xy=

(True/False)
4.9/5
(36)

A value of sinhx\sinh x or coshx\cosh x is given. Use the definitions and the identity cosh2xsinh2x=1\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1 to find the value of the other indicated hyperbolic function. - coshx=1715,x<0,cschx=\cosh x = \frac { 17 } { 15 } , x < 0 , \operatorname { csch } x =

(Multiple Choice)
4.9/5
(29)

Solve the differential equation. - dydx=3x2cos2y\frac { d y } { d x } = 3 x ^ { 2 } \cos ^ { 2 } y

(Multiple Choice)
4.9/5
(43)

Find the slowest growing and the fastest growing functions as x→∞ . - y=2+9x y= y=/6 y=x

(Multiple Choice)
4.8/5
(40)

Evaluate the integral. - secxtanx5+secxdx\int \frac { \sec x \tan x } { 5 + \sec x } d x

(Multiple Choice)
4.9/5
(41)

A value of sinhx\sinh x or coshx\cosh x is given. Use the definitions and the identity cosh2xsinh2x=1\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1 to find the value of the other indicated hyperbolic function. - sinhx=125,cschx=\sinh x = - \frac { 12 } { 5 } , \operatorname { csch } x =

(Multiple Choice)
4.8/5
(29)

Evaluate the integral. - 2e5xdx\int 2 e ^ { 5 x } d x

(Multiple Choice)
4.7/5
(40)

Evaluate the integral. - 12x4x2dx\int _ { 1 } ^ { \sqrt { 2 } } x 4 ^ { x ^ { 2 } } d x

(Multiple Choice)
4.7/5
(40)

Evaluate the integral. - t81dt\int t \sqrt { 8 } - 1 d t

(Multiple Choice)
4.9/5
(35)

Evaluate the integral. - 124lnxxdx\int _ { 1 } ^ { 2 } \frac { 4 ^ { \ln x } } { x } d x

(Multiple Choice)
4.7/5
(36)

Solve the problem. -The charcoal from a tree killed in a volcanic eruption contained 68.2% of the carbon-14 found in living matter. How old is the tree, to the nearest year? Use 5700 years for the half-life of carbon-14.

(Multiple Choice)
4.7/5
(29)

Evaluate the integral. - 0ln55cosh2(x2)dx\int _ { 0 } ^ { \ln 5 } 5 \cosh ^ { 2 } \left( \frac { x } { 2 } \right) d x

(Multiple Choice)
4.8/5
(40)
Showing 101 - 120 of 176
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)