Exam 8: Integrals and Transcendental Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine if the given function y = f(x) is a solution of the accompanying differential equation. - -y=3 y=+3x

(True/False)
4.8/5
(39)

Solve the differential equation. - dydx=3x2ey\frac { d y } { d x } = 3 x ^ { 2 } e ^ { - y }

(Multiple Choice)
4.9/5
(33)

Evaluate the integral. - 8dx9+3x\int \frac { 8 d x } { 9 + 3 x }

(Multiple Choice)
4.8/5
(31)

Find the derivative of y with respect to the appropriate variable. - y=cosh12x+3y = \cosh ^ { - 1 } 2 \sqrt { x + 3 }

(Multiple Choice)
4.9/5
(26)

Express the value of the inverse hyperbolic function in terms of natural logarithms. - tanh1(910)\tanh ^ { - 1 } \left( \frac { 9 } { 10 } \right)

(Multiple Choice)
4.7/5
(42)

Solve the problem. -Find the volume of the solid that is generated by revolving the area bounded by the xx -axis, the curve y=7xx2+1,x=1y = \sqrt { \frac { 7 x } { x ^ { 2 } + 1 } } , x = 1 , and x=8x = 8 about the xx -axis.

(Multiple Choice)
4.9/5
(30)

Evaluate the integral. - 129x2x3dx\int _ { 1 } ^ { 2 } 9 x ^ { 2 } x ^ { 3 } d x

(Multiple Choice)
4.8/5
(43)

Provide an appropriate response. -Show that limxln(x+1)lnx=limxln(x+9982)lnx\lim _ { x \rightarrow } \frac { \ln ( x + 1 ) } { \ln x } = \lim _ { x \rightarrow } \frac { \ln ( x + 9982 ) } { \ln x } . Explain why this is the case.

(Essay)
4.9/5
(34)

Solve the initial value problem. - dydt=etsec2(πet),y(ln5)=1π\frac { d y } { d t } = e ^ { - t } \sec ^ { 2 } \left( \pi e ^ { - t } \right) , y ( - \ln 5 ) = \frac { 1 } { \pi }

(Multiple Choice)
4.8/5
(38)

Express the value of the inverse hyperbolic function in terms of natural logarithms. - coth1(65)\operatorname { coth } ^ { - 1 } \left( \frac { 6 } { 5 } \right)

(Multiple Choice)
4.9/5
(38)

Solve the initial value problem. - d2ydx2=5ex,y(0)=4,y(0)=0\frac { \mathrm { d } ^ { 2 } y } { d x ^ { 2 } } = - 5 e ^ { - x } , y ( 0 ) = - 4 , y ^ { \prime } ( 0 ) = 0

(Multiple Choice)
4.9/5
(39)

A value of sinhx\sinh x or coshx\cosh x is given. Use the definitions and the identity cosh2xsinh2x=1\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1 to find the value of the other indicated hyperbolic function. - coshx=1312,x>0,tanhx=\cosh x = \frac { 13 } { 12 } , x > 0 , \tanh x =

(Multiple Choice)
4.7/5
(34)

Find the derivative of y with respect to the appropriate variable. - y=(θ2+4θ)tanh1(θ+3)y = \left( \theta ^ { 2 } + 4 \theta \right) \tanh ^ { - 1 } ( \theta + 3 )

(Multiple Choice)
4.9/5
(30)

Evaluate the integral. - tanh(x2)dx\int \tanh \left( \frac { x } { 2 } \right) d x

(Multiple Choice)
4.7/5
(40)

Solve the initial value problem. - d2ydt2=e2t+4sint,y(0)=0,y(0)=8\frac { \mathrm { d } ^ { 2 } \mathrm { y } } { \mathrm { dt } ^ { 2 } } = \mathrm { e } ^ { 2 \mathrm { t } } + 4 \sin \mathrm { t } , \mathrm { y } ( 0 ) = 0 , \mathrm { y } ^ { \prime } ( 0 ) = 8

(Multiple Choice)
4.8/5
(37)

Determine if the given function y = f(x) is a solution of the accompanying differential equation. -Differential equation: xy+y=2x9x y ^ { \prime } + y = \frac { 2 x } { 9 } Initial condition: y(9)=2y ( 9 ) = 2 Solution candidate: y=9x+x9y = \frac { 9 } { x } + \frac { x } { 9 }

(True/False)
4.8/5
(29)

Find the slowest growing and the fastest growing functions as x→∞ . - y=7 y= y= y=x

(Multiple Choice)
4.9/5
(41)

Verify the integration formula. - 2sechxdx=sin1(1x2)+C\int 2 \operatorname { sech } x d x = \sin ^ { - 1 } \left( 1 - x ^ { 2 } \right) + C

(True/False)
4.8/5
(27)

Solve the problem. -The region between the curve y=1x2y = \frac { 1 } { x ^ { 2 } } and the xx -axis from x=14x = \frac { 1 } { 4 } to x=4x = 4 is revolved about the yy -axis to generate a solid. Find the volume of the solid.

(Multiple Choice)
4.9/5
(44)

Find the derivative of y with respect to the appropriate variable. - y=7tanh1(cosx)y = 7 \tanh ^ { - 1 } ( \cos x )

(Multiple Choice)
4.9/5
(40)
Showing 121 - 140 of 176
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)