Exam 13: Vectors and the Geometry of Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the vector projv u. -v = i + j + k, u = 3i + 4j + 12k

(Multiple Choice)
4.8/5
(32)

Identify the type of surface represented by the given equation. - x25+y23=8\frac { x ^ { 2 } } { 5 } + \frac { y ^ { 2 } } { 3 } = 8

(Multiple Choice)
4.8/5
(39)

Find the component form of the specified vector. -The vector from the point A(8, 1) to the origin

(Multiple Choice)
4.8/5
(42)

Find an equation for the line that passes through the given point and satisfies the given conditions. -P = (-5, 7); parallel to v = -2i - 3j

(Multiple Choice)
4.9/5
(31)

Identify the type of surface represented by the given equation. - x29y23z24=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 3 } - \frac { z ^ { 2 } } { 4 } = 1

(Multiple Choice)
4.8/5
(37)

Find the indicated vector. -Let u=7,5,v=7,3\mathbf { u } = \langle - 7 , - 5 \rangle , \mathbf { v } = \langle 7 , - 3 \rangle . Find 513u1213v\frac { 5 } { 13 } \mathbf { u } - \frac { 12 } { 13 } \mathbf { v } .

(Multiple Choice)
4.8/5
(33)

Solve the problem. -A force of magnitude 10 pounds pulling on a suitcase makes an angle of 6060 ^ { \circ } with the ground. Express the force in terms of its i\mathbf { i } and j\mathbf { j } components.

(Multiple Choice)
4.9/5
(39)

Find an equation for the sphere with the given center and radius. -Center (-2, 0, 0), radius = 9

(Multiple Choice)
4.8/5
(37)

Express the vector as a product of its length and direction. - 16i+13j12k\frac { 1 } { \sqrt { 6 } } \mathbf { i } + \frac { 1 } { \sqrt { 3 } } \mathbf { j } - \frac { 1 } { \sqrt { 2 } } \mathbf { k }

(Multiple Choice)
4.8/5
(33)

Describe the given set of points with a single equation or with a pair of equations. -The plane through the point (-1, -2, -5) and perpendicular to the x-axis

(Multiple Choice)
4.8/5
(25)

Match the equation with the surface it defines. - x281+y281=z2100\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 81 } = \frac { z ^ { 2 } } { 100 }  Match the equation with the surface it defines. - \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 81 } = \frac { z ^ { 2 } } { 100 }

(Multiple Choice)
5.0/5
(46)

Find parametric equations for the line described below. -The line through the point P( , , 0) and perpendicular to the plane x + 6y + 4z = 3

(Multiple Choice)
4.8/5
(23)

Match the equation with the surface it defines. - x225+y2100+z225=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 100 } + \frac { z ^ { 2 } } { 25 } = 1  Match the equation with the surface it defines. - \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 100 } + \frac { z ^ { 2 } } { 25 } = 1

(Multiple Choice)
4.7/5
(32)

Solve the problem. -How much work does it take to slide a box 46 meters along the ground by pulling it with a 72 N72 \mathrm {~N} force at an angle of 1515 ^ { \circ } from the horizontal?

(Multiple Choice)
4.9/5
(34)

Find the vector projv u. -v = 3j, u = 4i + 3k

(Multiple Choice)
4.9/5
(33)

Solve the problem. -Find the work done by a force of 18i (newtons) in moving as object along a line from the origin to the point (3, 3) (distance in meters).

(Multiple Choice)
4.9/5
(32)

 Express the vector in the form v=v1i+v2j+v3k\text { Express the vector in the form } v = v _ { 1 } i + v _ { 2 } j + v _ { 3 } k \text {. } - P1P2 if P1 is the point (6,3,4) and P2 is the point (4,6,0)\overrightarrow { \mathrm { P } _ { 1 } \mathrm { P } _ { 2 } } \text { if } \mathrm { P } _ { 1 } \text { is the point } ( - 6 , - 3,4 ) \text { and } \mathrm { P } _ { 2 } \text { is the point } ( - 4 , - 6,0 )

(Multiple Choice)
4.8/5
(37)

Find the acute angle, in degrees, between the lines. -3x - y = 16 and 2x + y = -13

(Multiple Choice)
4.8/5
(28)

Solve the problem. -Let u=2i+7j,v=2i+3j\mathbf { u } = - 2 \mathbf { i } + 7 \mathbf { j } , \mathbf { v } = 2 \mathbf { i } + 3 \mathbf { j } , and w=ij\mathbf { w } = \mathbf { i } - \mathbf { j } . Write u=u1+u2\mathbf { u } = \mathbf { u } _ { 1 } + \mathbf { u } _ { 2 } where u1\mathbf { u } _ { 1 } is parallel to v\mathbf { v } and u2\mathbf { u } _ { 2 } is parallel to w\mathbf { w } .

(Multiple Choice)
4.8/5
(33)

Give a geometric description of the set of points whose coordinates satisfy the given conditions. - (x10)2+(y2)2+(z2)2<4( x - 10 ) ^ { 2 } + ( y - 2 ) ^ { 2 } + ( z - 2 ) ^ { 2 } < 4

(Multiple Choice)
4.9/5
(29)
Showing 161 - 180 of 229
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)