Exam 13: Vectors and the Geometry of Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write one or more inequalities that describe the set of points. -The half-space consisting of the points on and behind the yz-plane

(Multiple Choice)
4.8/5
(38)

Solve the problem. -A bird flies from its nest 7 km7 \mathrm {~km} in the direction 22 ^ { \circ } north of east, where it stops to rest on a tree. It then flies 10 km10 \mathrm {~km} in the direction 44 ^ { \circ } south of west and lands atop a telephone pole. With an xy-coordinate system where the origin is the bird's nest, the xx -axis points east, and the yy -axis points north, at what point is the telephone pole located?

(Multiple Choice)
4.8/5
(31)

Provide an appropriate response. -Show that the midpoint of the hypotenuse of a right triangle is equidistant from all three vertices. [Hint: See the figure below. Show that a+b2=ab2\left| \frac { a + b } { 2 } \right| = \left| \frac { a - b } { 2 } \right| .]  Provide an appropriate response. -Show that the midpoint of the hypotenuse of a right triangle is equidistant from all three vertices. [Hint: See the figure below. Show that  \left| \frac { a + b } { 2 } \right| = \left| \frac { a - b } { 2 } \right| .]

(Essay)
4.9/5
(31)

Write the equation for the plane. -The plane through the point A(2, 10, 8) perpendicular to the vector from the origin to A.

(Multiple Choice)
4.8/5
(35)

Find a parametrization for the line segment joining the points. -(2, -7, -2), (0, -7, 4)

(Multiple Choice)
4.8/5
(28)

Solve the problem. -Find the area of the triangle determined by the points P(-3, 6, -4), Q(-7, , ), and R(-8, -2, ).

(Multiple Choice)
4.9/5
(42)

 Calculate the direction of P1P2 and the midpoint of line segment P1P2\text { Calculate the direction of } \overrightarrow { P _ { 1 } P _ { 2 } } \text { and the midpoint of line segment } P _ { 1 } P _ { 2 } \text {. } - P1(4,6,5)\mathrm { P } _ { 1 } ( - 4,6,5 ) and P2(1,2,10)\mathrm { P } _ { 2 } ( - 1,2,10 )

(Multiple Choice)
4.9/5
(25)

Write the equation for the plane. -The plane through the point P(-6, 8, 9) and perpendicular to the line x = 3 + 9t, y = -5 + 9t, z = 6 - t.

(Multiple Choice)
4.9/5
(41)

Identify the type of surface represented by the given equation. - x29+y24z29=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } - \frac { z ^ { 2 } } { 9 } = 1

(Multiple Choice)
4.8/5
(36)

Write the equation for the plane. -The plane through the point P(-2, -5, 6) and normal to n = -6i - 3j + 5k.

(Multiple Choice)
4.8/5
(33)

Solve the problem. -An airplane is flying in the direction 5151 ^ { \circ } west of north at 660 km/hr660 \mathrm {~km} / \mathrm { hr } . Find the component form of the velocity of the airplane, assuming that the positive xx -axis represents due east and the positive yy -axis represents due north.

(Multiple Choice)
4.9/5
(44)

Find the center and radius of the sphere. - x2+(y+10)2+(z1)2=64x ^ { 2 } + ( y + 10 ) ^ { 2 } + ( z - 1 ) ^ { 2 } = 64

(Multiple Choice)
4.8/5
(43)

Provide an appropriate response. -  Show that the vectors ab+ba and abba are orthogonal. \text { Show that the vectors } | \mathbf { a } | \mathbf { b } + | \mathbf { b } | \mathbf { a } \text { and } | \mathbf { a } | \mathbf { b } - | \mathbf { b } | \mathbf { a } \text { are orthogonal. }

(Essay)
4.9/5
(29)

Write one or more inequalities that describe the set of points. -The exterior of the sphere of radius 5 centered at the point (-2, -3, -5)

(Multiple Choice)
4.8/5
(46)

Find an equation for the line that passes through the given point and satisfies the given conditions. -P = (10, 11); perpendicular to v = 5i - 4j

(Multiple Choice)
4.8/5
(37)

Find the angle between u and v in radians. -u = 7i + 6j + 3k, v = 5i + 2j + 6k

(Multiple Choice)
4.8/5
(35)

Find the intersection. -x = 4 + 3t, y = 10 - 10t, z = 2 + 3t ; -2x + 2y - 2z = 9

(Multiple Choice)
4.8/5
(38)

Find the triple scalar product (u x v) · w of the given vectors. -u = 4i + 2j - k; v = 2i + 8j - 6k; w = 7i + 4j - 5k

(Multiple Choice)
4.8/5
(39)

 Express the vector in the form v=v1i+v2j+v3k\text { Express the vector in the form } v = v _ { 1 } i + v _ { 2 } j + v _ { 3 } k \text {. } - AB if A is the point (7,6,5) and B is the point (2,13,2)\overrightarrow { \mathrm { AB } } \text { if } \mathrm { A } \text { is the point } ( - 7 , - 6 , - 5 ) \text { and } \mathrm { B } \text { is the point } ( - 2 , - 13 , - 2 )

(Multiple Choice)
4.9/5
(45)

Find the acute angle, in degrees, between the lines. - y=3x+16y = \sqrt { 3 } x + 16 and y=3x+8y = - \sqrt { 3 } x + 8

(Multiple Choice)
4.7/5
(39)
Showing 41 - 60 of 229
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)