Exam 13: Vectors and the Geometry of Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the indicated vector. -Let u=7,3\mathbf { u } = \langle - 7,3 \rangle . Find 2u2 \mathbf { u } .

(Multiple Choice)
5.0/5
(30)

Identify the type of surface represented by the given equation. -y2 + z2 = 7

(Multiple Choice)
4.7/5
(41)

Find the intersection. -8x - 7y = -3, 4y + 7z = 5

(Multiple Choice)
4.7/5
(37)

Find the indicated vector. -Let u=7,4\mathbf { u } = \langle - 7 , - 4 \rangle . Find 5u- 5 \mathbf { u } .

(Multiple Choice)
4.8/5
(42)

Solve the problem. -Find the volume of the solid bounded by the paraboloid x249+y281=z2\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 81 } = \frac { z } { 2 } and the planes z=0z = 0 and z=6z = 6 . (The area of an ellipse with semiaxes a\mathrm { a } and b\mathrm { b } is πab\pi \mathrm { ab } .)

(Multiple Choice)
4.7/5
(30)

Express the vector as a product of its length and direction. - 83j2k\frac { 8 } { 3 } \mathbf { j } - 2 \mathbf { k }

(Multiple Choice)
4.8/5
(32)

Find the center and radius of the sphere. - (x+2)2+(y+8)2+(z+4)2=116( x + 2 ) ^ { 2 } + ( y + 8 ) ^ { 2 } + ( z + 4 ) ^ { 2 } = \frac { 1 } { 16 }

(Multiple Choice)
4.9/5
(43)

Find the vector projv u. -v = 7i - 3j + k, u = -4j + 3k

(Multiple Choice)
4.9/5
(32)

Find the intersection. -x = -2 + 2t, y = 1 + 10t, z = -2 + 7t ; -10x + 2y + 8z = 4

(Multiple Choice)
4.9/5
(34)

Find an equation for the line that passes through the given point and satisfies the given conditions. -P = (-8, 3); perpendicular to v = -2i - 5j

(Multiple Choice)
4.8/5
(43)

Solve the problem. -A bullet is fired with a muzzle velocity of 1324ft/sec1324 \mathrm { ft } / \mathrm { sec } from a gun aimed at an angle of 3636 ^ { \circ } above the horizontal. Find the horizontal component of the velocity.

(Multiple Choice)
4.8/5
(41)

Solve the problem. -  Find the magnitude of the torque in foot-pounds at point P for the following lever: \text { Find the magnitude of the torque in foot-pounds at point } P \text { for the following lever: }  Solve the problem. - \text { Find the magnitude of the torque in foot-pounds at point } P \text { for the following lever: }     |\overrightarrow{P Q}|=6 \text { in. and }|F|=10 \mathrm{lb}   PQ=6 in. and F=10lb|\overrightarrow{P Q}|=6 \text { in. and }|F|=10 \mathrm{lb}

(Multiple Choice)
4.8/5
(34)

Solve the problem. -Find the volume of the solid bounded by the hyperboloid of one sheet x29+y264z29=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 64 } - \frac { z ^ { 2 } } { 9 } = 1 and the planes z=2z = - 2 and z=2z = 2 . (The area of an ellipse with semiaxes a and bb is πab\pi a b .)

(Multiple Choice)
4.8/5
(48)

Use a calculator to find the acute angle between the planes to the nearest thousandth of a radian. -8x + 4y + 3z = 1 and 7x + 10y + 7z = -6

(Multiple Choice)
4.8/5
(34)

Find the center and radius of the sphere. - x2+y2+z28x2y+8z=3x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 8 x - 2 y + 8 z = 3

(Multiple Choice)
4.8/5
(35)

Find the indicated vector. -Let u=2,5,v=2,5\mathbf { u } = \langle - 2 , - 5 \rangle , \mathbf { v } = \langle - 2,5 \rangle . Find vu\mathbf { v } - \mathbf { u } .

(Multiple Choice)
4.8/5
(39)

Calculate the requested distance. -The distance from the point S(-10, -4, -6) to the plane -9x + 2y + 6z

(Multiple Choice)
4.9/5
(39)

 Use the vectors u,v,w, and z head to tail as needed to sketch the indicated vector. \text { Use the vectors } u , v , w \text {, and } z \text { head to tail as needed to sketch the indicated vector. } \text { Use the vectors } u , v , w \text {, and } z \text { head to tail as needed to sketch the indicated vector. }     - \mathbf{Z}=\mathbf{V}     - Z=V\mathbf{Z}=\mathbf{V} \text { Use the vectors } u , v , w \text {, and } z \text { head to tail as needed to sketch the indicated vector. }     - \mathbf{Z}=\mathbf{V}

(Multiple Choice)
4.9/5
(45)

Solve the problem. -For the triangle with vertices located at A(3, 5, 5), B(5, 2, 4), and C(1, 1, 1) , find a vector from vertex C to the midpoint of side AB.

(Multiple Choice)
4.8/5
(38)

Find the triple scalar product (u x v) · w of the given vectors. -u = 2i - 4j + 3k; v = -4i - 7j + 9k; w = 7i - 3j + 3k

(Multiple Choice)
4.9/5
(43)
Showing 141 - 160 of 229
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)