Exam 13: Vectors and the Geometry of Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find an equation for the line that passes through the given point and satisfies the given conditions. -P = (9, 4); parallel to v = 2i + 5j

(Multiple Choice)
4.8/5
(37)

Find parametric equations for the line described below. -The line through the point P(-1, -2, 1) parallel to the vector 5i - 5j - 8k

(Multiple Choice)
4.8/5
(37)

Sketch the given surface. - x2+y2=z2x ^ { 2 } + y ^ { 2 } = z ^ { 2 }  Sketch the given surface. - x ^ { 2 } + y ^ { 2 } = z ^ { 2 }

(Essay)
4.9/5
(29)

Solve the problem. -Find a unit vector perpendicular to plane PQR determined by the points P(2, 1, 1), Q(1, 0, 0) and R(2, 2, 2).

(Multiple Choice)
4.7/5
(39)

Find the center and radius of the sphere. - x2+y2+z218x10y6z=15x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 18 x - 10 y - 6 z = - 15

(Multiple Choice)
5.0/5
(39)

Write one or more inequalities that describe the set of points. -The rectangular solid in the first octant bounded by the planes x = 5, x = 8, y = 7, y = 9, z = 6 and z = 7 (planes excluded)

(Multiple Choice)
4.8/5
(40)

Write the equation for the plane. -The plane through the points P(5, 2, -30) , Q(-3, 6, -26) and R(-1, -3, 29).

(Multiple Choice)
4.8/5
(31)

Express the vector as a product of its length and direction. - 157j+87k\frac { 15 } { 7 } j + \frac { 8 } { 7 } \mathbf { k }

(Multiple Choice)
4.9/5
(28)

Find the indicated vector. -Let u=2,9\mathbf { u } = \langle - 2 , - 9 \rangle . Find 5u5 \mathbf { u } .

(Multiple Choice)
5.0/5
(33)

Match the equation with the surface it defines. - x264+z264=y6\frac { x ^ { 2 } } { 64 } + \frac { z ^ { 2 } } { 64 } = \frac { y } { 6 }  Match the equation with the surface it defines. - \frac { x ^ { 2 } } { 64 } + \frac { z ^ { 2 } } { 64 } = \frac { y } { 6 }

(Multiple Choice)
4.7/5
(39)

Find an equation for the line that passes through the given point and satisfies the given conditions. -P = (-5, -5); perpendicular to v = -6i + 6j

(Multiple Choice)
4.8/5
(27)

Find the triple scalar product (u x v) · w of the given vectors. -u = i + j + k; v = 9i + 7j + 2k; w = 10i + 6j + 5k

(Multiple Choice)
5.0/5
(46)

Calculate the requested distance. -The distance from the point S(5, -3, -8) to the plane 3x + 4y = -6

(Multiple Choice)
4.9/5
(33)

 Express the vector in the form v=v1i+v2j+v3k\text { Express the vector in the form } v = v _ { 1 } i + v _ { 2 } j + v _ { 3 } k \text {. } - 7u5v if u=1,1,0 and v=3,0,17 \mathbf { u } - 5 \mathbf { v } \text { if } \mathbf { u } = \langle 1,1,0 \rangle \text { and } \mathbf { v } = \langle 3,0,1 \rangle

(Multiple Choice)
4.8/5
(31)

Identify the type of surface represented by the given equation. - x23+y25=z24\frac { x ^ { 2 } } { 3 } + \frac { y ^ { 2 } } { 5 } = \frac { z ^ { 2 } } { 4 }

(Multiple Choice)
4.8/5
(43)

Express the vector as a product of its length and direction. --5i + 5j + 5k

(Multiple Choice)
4.9/5
(35)

Find the intersection. -x + y + z = , x + y =

(Multiple Choice)
4.7/5
(29)

Solve the problem. -A ramp leading to the entrance of a building is inclined upward at an angle of 33 ^ { \circ } . A suitcase is to be pulled up the ramp by a handle that makes an angle of 3838 ^ { \circ } with the horizontal. How much force must be applied in the direction of the handle so that the component of the force parallel to the ramp is 50 lbs.?

(Multiple Choice)
4.9/5
(39)

Find the acute angle, in degrees, between the lines. - (1+3)x+(13)y=10( 1 + \sqrt { 3 } ) x + ( 1 - \sqrt { 3 } ) y = 10 and 3x+y=14\sqrt { 3 } x + y = 14

(Multiple Choice)
5.0/5
(32)

 Calculate the direction of P1P2 and the midpoint of line segment P1P2\text { Calculate the direction of } \overrightarrow { P _ { 1 } P _ { 2 } } \text { and the midpoint of line segment } P _ { 1 } P _ { 2 } \text {. } - P1(7,8,5)\mathrm { P } _ { 1 } ( 7,8,5 ) and P2(15,16,9)\mathrm { P } _ { 2 } ( 15,16,9 )

(Multiple Choice)
4.9/5
(36)
Showing 101 - 120 of 229
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)