Exam 2: Motion Along a Straight Line

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Scalar (dot) product: The angle between vector Scalar (dot) product: The angle between vector   = 2.00   + 3.00   and vector   is   The scalar product of vectors   and   is 3.00. If the x component of vector   is positive, what is vector   . = 2.00 Scalar (dot) product: The angle between vector   = 2.00   + 3.00   and vector   is   The scalar product of vectors   and   is 3.00. If the x component of vector   is positive, what is vector   . + 3.00 Scalar (dot) product: The angle between vector   = 2.00   + 3.00   and vector   is   The scalar product of vectors   and   is 3.00. If the x component of vector   is positive, what is vector   . and vector Scalar (dot) product: The angle between vector   = 2.00   + 3.00   and vector   is   The scalar product of vectors   and   is 3.00. If the x component of vector   is positive, what is vector   . is Scalar (dot) product: The angle between vector   = 2.00   + 3.00   and vector   is   The scalar product of vectors   and   is 3.00. If the x component of vector   is positive, what is vector   . The scalar product of vectors Scalar (dot) product: The angle between vector   = 2.00   + 3.00   and vector   is   The scalar product of vectors   and   is 3.00. If the x component of vector   is positive, what is vector   . and Scalar (dot) product: The angle between vector   = 2.00   + 3.00   and vector   is   The scalar product of vectors   and   is 3.00. If the x component of vector   is positive, what is vector   . is 3.00. If the x component of vector Scalar (dot) product: The angle between vector   = 2.00   + 3.00   and vector   is   The scalar product of vectors   and   is 3.00. If the x component of vector   is positive, what is vector   . is positive, what is vector Scalar (dot) product: The angle between vector   = 2.00   + 3.00   and vector   is   The scalar product of vectors   and   is 3.00. If the x component of vector   is positive, what is vector   . .

Free
(Multiple Choice)
4.7/5
(47)
Correct Answer:
Verified

B

Components: Vector Components: Vector   has a magnitude 5.00 and points in a direction 40.0° clockwise from the negative y axis. What are the x and y components of vector   . has a magnitude 5.00 and points in a direction 40.0° clockwise from the negative y axis. What are the x and y components of vector Components: Vector   has a magnitude 5.00 and points in a direction 40.0° clockwise from the negative y axis. What are the x and y components of vector   . .

Free
(Multiple Choice)
4.9/5
(33)
Correct Answer:
Verified

C

Vector (cross) product: If Vector (cross) product: If   and   are nonzero vectors for which   ∙   = 0, it must follow that and Vector (cross) product: If   and   are nonzero vectors for which   ∙   = 0, it must follow that are nonzero vectors for which Vector (cross) product: If   and   are nonzero vectors for which   ∙   = 0, it must follow thatVector (cross) product: If   and   are nonzero vectors for which   ∙   = 0, it must follow that = 0, it must follow that

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

C

Addition and subtraction: Vectors Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the magnitude of vector   ?  and Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the magnitude of vector   ?  are shown in the figure. Vector Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the magnitude of vector   ?  is given by Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the magnitude of vector   ?  = Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the magnitude of vector   ?  - Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the magnitude of vector   ?  . The magnitude of vector Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the magnitude of vector   ?  is 16.0 units, and the magnitude of vector Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the magnitude of vector   ?  is 7.00 units. What is the magnitude of vector Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the magnitude of vector   ?  ? Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the magnitude of vector   ?

(Multiple Choice)
4.7/5
(36)

Addition and subtraction: Vectors Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the angle of vector   , measured counterclockwise from the +x-axis?  and Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the angle of vector   , measured counterclockwise from the +x-axis?  are shown in the figure. Vector Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the angle of vector   , measured counterclockwise from the +x-axis?  is given by Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the angle of vector   , measured counterclockwise from the +x-axis?  = Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the angle of vector   , measured counterclockwise from the +x-axis?  - Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the angle of vector   , measured counterclockwise from the +x-axis?  . The magnitude of vector Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the angle of vector   , measured counterclockwise from the +x-axis?  is 16.0 units, and the magnitude of vector Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the angle of vector   , measured counterclockwise from the +x-axis?  is 7.00 units. What is the angle of vector Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the angle of vector   , measured counterclockwise from the +x-axis?  , measured counterclockwise from the +x-axis? Addition and subtraction: Vectors   and   are shown in the figure. Vector   is given by   =   -   . The magnitude of vector   is 16.0 units, and the magnitude of vector   is 7.00 units. What is the angle of vector   , measured counterclockwise from the +x-axis?

(Multiple Choice)
4.7/5
(40)

Vector (cross) product: If Vector (cross) product: If   = - 4   - 2   - 3   , what is   ×   ? = - 4 Vector (cross) product: If   = - 4   - 2   - 3   , what is   ×   ? - 2 Vector (cross) product: If   = - 4   - 2   - 3   , what is   ×   ? - 3 Vector (cross) product: If   = - 4   - 2   - 3   , what is   ×   ? , what is Vector (cross) product: If   = - 4   - 2   - 3   , what is   ×   ? × Vector (cross) product: If   = - 4   - 2   - 3   , what is   ×   ? ?

(Multiple Choice)
4.9/5
(35)

Vector (cross) product: For the vectors shown in the figure, find the magnitude and direction of Vector (cross) product: For the vectors shown in the figure, find the magnitude and direction of   ×   , assuming that the quantities shown are accurate to two significant figures.  × Vector (cross) product: For the vectors shown in the figure, find the magnitude and direction of   ×   , assuming that the quantities shown are accurate to two significant figures.  , assuming that the quantities shown are accurate to two significant figures. Vector (cross) product: For the vectors shown in the figure, find the magnitude and direction of   ×   , assuming that the quantities shown are accurate to two significant figures.

(Multiple Choice)
4.9/5
(38)

Vector (cross) product: If the magnitude of the cross product of two vectors is one-half the dot product of the same vectors, what is the angle between the two vectors?

(Short Answer)
4.7/5
(34)

Scalar (dot) product: What is the angle between the vector Scalar (dot) product: What is the angle between the vector   = + 3   - 2   - 3   and the +y-axis? = + 3 Scalar (dot) product: What is the angle between the vector   = + 3   - 2   - 3   and the +y-axis? - 2 Scalar (dot) product: What is the angle between the vector   = + 3   - 2   - 3   and the +y-axis? - 3 Scalar (dot) product: What is the angle between the vector   = + 3   - 2   - 3   and the +y-axis? and the +y-axis?

(Multiple Choice)
4.8/5
(35)

Vector (cross) product: What is the magnitude of the cross product of a vector of magnitude 2.00 m pointing east and a vector of magnitude 4.00 m pointing 30.0° west of north?

(Multiple Choice)
4.9/5
(34)

Scalar (dot) product: The scalar product of vector Scalar (dot) product: The scalar product of vector   = 3.00   + 2.00   and vector   is 10.0. Which of the following vectors could be vector   ? = 3.00 Scalar (dot) product: The scalar product of vector   = 3.00   + 2.00   and vector   is 10.0. Which of the following vectors could be vector   ? + 2.00 Scalar (dot) product: The scalar product of vector   = 3.00   + 2.00   and vector   is 10.0. Which of the following vectors could be vector   ? and vector Scalar (dot) product: The scalar product of vector   = 3.00   + 2.00   and vector   is 10.0. Which of the following vectors could be vector   ? is 10.0. Which of the following vectors could be vector Scalar (dot) product: The scalar product of vector   = 3.00   + 2.00   and vector   is 10.0. Which of the following vectors could be vector   ? ?

(Multiple Choice)
4.8/5
(31)

Components: The components of vector Components: The components of vector   are   = -3.5 and   = -9.7, and the components of vector   are   = -6 and   = + 8.1. What is the angle (less than 180 degrees) between vectors   and   ? are Components: The components of vector   are   = -3.5 and   = -9.7, and the components of vector   are   = -6 and   = + 8.1. What is the angle (less than 180 degrees) between vectors   and   ? = -3.5 and Components: The components of vector   are   = -3.5 and   = -9.7, and the components of vector   are   = -6 and   = + 8.1. What is the angle (less than 180 degrees) between vectors   and   ? = -9.7, and the components of vector Components: The components of vector   are   = -3.5 and   = -9.7, and the components of vector   are   = -6 and   = + 8.1. What is the angle (less than 180 degrees) between vectors   and   ? are Components: The components of vector   are   = -3.5 and   = -9.7, and the components of vector   are   = -6 and   = + 8.1. What is the angle (less than 180 degrees) between vectors   and   ? = -6 and Components: The components of vector   are   = -3.5 and   = -9.7, and the components of vector   are   = -6 and   = + 8.1. What is the angle (less than 180 degrees) between vectors   and   ? = + 8.1. What is the angle (less than 180 degrees) between vectors Components: The components of vector   are   = -3.5 and   = -9.7, and the components of vector   are   = -6 and   = + 8.1. What is the angle (less than 180 degrees) between vectors   and   ? and Components: The components of vector   are   = -3.5 and   = -9.7, and the components of vector   are   = -6 and   = + 8.1. What is the angle (less than 180 degrees) between vectors   and   ? ?

(Multiple Choice)
4.9/5
(26)

Components: If the eastward component of vector Components: If the eastward component of vector   is equal to the westward component of vector   and their northward components are equal. Which one of the following statements about these two vectors is correct? is equal to the westward component of vector Components: If the eastward component of vector   is equal to the westward component of vector   and their northward components are equal. Which one of the following statements about these two vectors is correct? and their northward components are equal. Which one of the following statements about these two vectors is correct?

(Multiple Choice)
4.9/5
(33)

Components: Vector Components: Vector   has a magnitude of 5.5 cm and points along the x-axis. Vector   has a magnitude of 7.5 cm and points at +30° above the negative x-axis. (a) Determine the x and y components of Vector   . (b) Determine the x and y components of Vector   . (c) Determine x and y components of the sum of these two vectors. (d) Determine the magnitude and direction of the sum of these two vectors. has a magnitude of 5.5 cm and points along the x-axis. Vector Components: Vector   has a magnitude of 5.5 cm and points along the x-axis. Vector   has a magnitude of 7.5 cm and points at +30° above the negative x-axis. (a) Determine the x and y components of Vector   . (b) Determine the x and y components of Vector   . (c) Determine x and y components of the sum of these two vectors. (d) Determine the magnitude and direction of the sum of these two vectors. has a magnitude of 7.5 cm and points at +30° above the negative x-axis. (a) Determine the x and y components of Vector Components: Vector   has a magnitude of 5.5 cm and points along the x-axis. Vector   has a magnitude of 7.5 cm and points at +30° above the negative x-axis. (a) Determine the x and y components of Vector   . (b) Determine the x and y components of Vector   . (c) Determine x and y components of the sum of these two vectors. (d) Determine the magnitude and direction of the sum of these two vectors. . (b) Determine the x and y components of Vector Components: Vector   has a magnitude of 5.5 cm and points along the x-axis. Vector   has a magnitude of 7.5 cm and points at +30° above the negative x-axis. (a) Determine the x and y components of Vector   . (b) Determine the x and y components of Vector   . (c) Determine x and y components of the sum of these two vectors. (d) Determine the magnitude and direction of the sum of these two vectors. . (c) Determine x and y components of the sum of these two vectors. (d) Determine the magnitude and direction of the sum of these two vectors.

(Essay)
4.7/5
(33)

Components: A helicopter is flying horizontally with a speed of 444 m/s over a hill that slopes upward with a 2% grade (that is, the "rise" is 2% of the "run"). What is the component of the helicopter's velocity perpendicular to the sloping surface of the hill?

(Multiple Choice)
4.9/5
(30)

Scalar (dot) product: If Scalar (dot) product: If   = 3   -   + 4   and   = x   +   - 5   , find x so   will be perpendicular to   . = 3 Scalar (dot) product: If   = 3   -   + 4   and   = x   +   - 5   , find x so   will be perpendicular to   . - Scalar (dot) product: If   = 3   -   + 4   and   = x   +   - 5   , find x so   will be perpendicular to   . + 4 Scalar (dot) product: If   = 3   -   + 4   and   = x   +   - 5   , find x so   will be perpendicular to   . and Scalar (dot) product: If   = 3   -   + 4   and   = x   +   - 5   , find x so   will be perpendicular to   . = x Scalar (dot) product: If   = 3   -   + 4   and   = x   +   - 5   , find x so   will be perpendicular to   . + Scalar (dot) product: If   = 3   -   + 4   and   = x   +   - 5   , find x so   will be perpendicular to   . - 5 Scalar (dot) product: If   = 3   -   + 4   and   = x   +   - 5   , find x so   will be perpendicular to   . , find x so Scalar (dot) product: If   = 3   -   + 4   and   = x   +   - 5   , find x so   will be perpendicular to   . will be perpendicular to Scalar (dot) product: If   = 3   -   + 4   and   = x   +   - 5   , find x so   will be perpendicular to   . .

(Short Answer)
4.9/5
(32)

Components: Three forces are exerted on an object placed on a tilted floor. Forces are vectors. The three forces are directed as shown in the figure. If the forces have magnitudes Components: Three forces are exerted on an object placed on a tilted floor. Forces are vectors. The three forces are directed as shown in the figure. If the forces have magnitudes   = 1.0 N,   = 8.0 N and   = 7.0 N, where N is the standard unit of force, what is the component of the net force   <sub> </sub> <sub>net</sub> =   <sub> </sub> <sub>1 </sub>+   <sub> </sub> <sub>2 </sub>+   <sub> </sub> <sub>3</sub> parallel to the floor?  = 1.0 N, Components: Three forces are exerted on an object placed on a tilted floor. Forces are vectors. The three forces are directed as shown in the figure. If the forces have magnitudes   = 1.0 N,   = 8.0 N and   = 7.0 N, where N is the standard unit of force, what is the component of the net force   <sub> </sub> <sub>net</sub> =   <sub> </sub> <sub>1 </sub>+   <sub> </sub> <sub>2 </sub>+   <sub> </sub> <sub>3</sub> parallel to the floor?  = 8.0 N and Components: Three forces are exerted on an object placed on a tilted floor. Forces are vectors. The three forces are directed as shown in the figure. If the forces have magnitudes   = 1.0 N,   = 8.0 N and   = 7.0 N, where N is the standard unit of force, what is the component of the net force   <sub> </sub> <sub>net</sub> =   <sub> </sub> <sub>1 </sub>+   <sub> </sub> <sub>2 </sub>+   <sub> </sub> <sub>3</sub> parallel to the floor?  = 7.0 N, where N is the standard unit of force, what is the component of the net force Components: Three forces are exerted on an object placed on a tilted floor. Forces are vectors. The three forces are directed as shown in the figure. If the forces have magnitudes   = 1.0 N,   = 8.0 N and   = 7.0 N, where N is the standard unit of force, what is the component of the net force   <sub> </sub> <sub>net</sub> =   <sub> </sub> <sub>1 </sub>+   <sub> </sub> <sub>2 </sub>+   <sub> </sub> <sub>3</sub> parallel to the floor?  net = Components: Three forces are exerted on an object placed on a tilted floor. Forces are vectors. The three forces are directed as shown in the figure. If the forces have magnitudes   = 1.0 N,   = 8.0 N and   = 7.0 N, where N is the standard unit of force, what is the component of the net force   <sub> </sub> <sub>net</sub> =   <sub> </sub> <sub>1 </sub>+   <sub> </sub> <sub>2 </sub>+   <sub> </sub> <sub>3</sub> parallel to the floor?  1 + Components: Three forces are exerted on an object placed on a tilted floor. Forces are vectors. The three forces are directed as shown in the figure. If the forces have magnitudes   = 1.0 N,   = 8.0 N and   = 7.0 N, where N is the standard unit of force, what is the component of the net force   <sub> </sub> <sub>net</sub> =   <sub> </sub> <sub>1 </sub>+   <sub> </sub> <sub>2 </sub>+   <sub> </sub> <sub>3</sub> parallel to the floor?  2 + Components: Three forces are exerted on an object placed on a tilted floor. Forces are vectors. The three forces are directed as shown in the figure. If the forces have magnitudes   = 1.0 N,   = 8.0 N and   = 7.0 N, where N is the standard unit of force, what is the component of the net force   <sub> </sub> <sub>net</sub> =   <sub> </sub> <sub>1 </sub>+   <sub> </sub> <sub>2 </sub>+   <sub> </sub> <sub>3</sub> parallel to the floor?  3 parallel to the floor? Components: Three forces are exerted on an object placed on a tilted floor. Forces are vectors. The three forces are directed as shown in the figure. If the forces have magnitudes   = 1.0 N,   = 8.0 N and   = 7.0 N, where N is the standard unit of force, what is the component of the net force   <sub> </sub> <sub>net</sub> =   <sub> </sub> <sub>1 </sub>+   <sub> </sub> <sub>2 </sub>+   <sub> </sub> <sub>3</sub> parallel to the floor?

(Multiple Choice)
4.8/5
(31)

Scalar (dot) product: A rectangular box is positioned with its vertices at the following points: A = (0,0,0) C = (2,4,0) E = (0,0,3) G = (2,4,3) B = (2,0,0) D = (0,4,0) F = (2,0,3) H = (0,4,3) If the coordinates all have three significant figures, the angle between the line segments AG and AH is closest to:

(Multiple Choice)
5.0/5
(33)

Vector (cross) product: For the vectors shown in the figure, find the magnitude and direction of the vector product Vector (cross) product: For the vectors shown in the figure, find the magnitude and direction of the vector product   ×   that the quantities shown are accurate to two significant figures.  × Vector (cross) product: For the vectors shown in the figure, find the magnitude and direction of the vector product   ×   that the quantities shown are accurate to two significant figures.  that the quantities shown are accurate to two significant figures. Vector (cross) product: For the vectors shown in the figure, find the magnitude and direction of the vector product   ×   that the quantities shown are accurate to two significant figures.

(Multiple Choice)
4.8/5
(36)

Unit vectors: Vector Unit vectors: Vector   = -1.00   + -2.00   and vector   = 3.00   + 4.00   What are the magnitude and direction of vector   = 3.00   + 2.00   ? = -1.00 Unit vectors: Vector   = -1.00   + -2.00   and vector   = 3.00   + 4.00   What are the magnitude and direction of vector   = 3.00   + 2.00   ? + -2.00 Unit vectors: Vector   = -1.00   + -2.00   and vector   = 3.00   + 4.00   What are the magnitude and direction of vector   = 3.00   + 2.00   ? and vector Unit vectors: Vector   = -1.00   + -2.00   and vector   = 3.00   + 4.00   What are the magnitude and direction of vector   = 3.00   + 2.00   ? = 3.00 Unit vectors: Vector   = -1.00   + -2.00   and vector   = 3.00   + 4.00   What are the magnitude and direction of vector   = 3.00   + 2.00   ? + 4.00 Unit vectors: Vector   = -1.00   + -2.00   and vector   = 3.00   + 4.00   What are the magnitude and direction of vector   = 3.00   + 2.00   ? What are the magnitude and direction of vector Unit vectors: Vector   = -1.00   + -2.00   and vector   = 3.00   + 4.00   What are the magnitude and direction of vector   = 3.00   + 2.00   ? = 3.00 Unit vectors: Vector   = -1.00   + -2.00   and vector   = 3.00   + 4.00   What are the magnitude and direction of vector   = 3.00   + 2.00   ? + 2.00 Unit vectors: Vector   = -1.00   + -2.00   and vector   = 3.00   + 4.00   What are the magnitude and direction of vector   = 3.00   + 2.00   ? ?

(Multiple Choice)
4.9/5
(30)
Showing 1 - 20 of 55
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)