Exam 2: A Preview of Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Consider the function f(x)=x and the point P(4,2) on the graph of f\text { Consider the function } f ( x ) = \sqrt { x } \text { and the point } P ( 4,2 ) \text { on the graph of } f \text {. } Graph ff and the secant line passing through P(4,2)P ( 4,2 ) and Q(x,f(x))Q ( x , f ( x ) ) for x=3x = 3 .

(Multiple Choice)
4.8/5
(28)

A ring has a inner circumference of 10 centimeters. What is the radius of the ring? Round your answer to four decimal places.

(Multiple Choice)
5.0/5
(33)

Determine the limit (if it exists). limx0sin4xx3\lim _ { x \rightarrow 0 } \frac { \sin ^ { 4 } x } { x ^ { 3 } }

(Multiple Choice)
4.9/5
(40)

Complete the table and use the result to estimate the limit. limx106x546x+10\lim _ { x \rightarrow - 10 } \frac { \sqrt { - 6 x - 54 } - \sqrt { 6 } } { x + 10 } x -10.1 -10.01 -10.001 -9.999 -9.99 -9.9 f(x)

(Multiple Choice)
4.8/5
(35)

Find the constant a such that the function f(x)={6,x5ax+b,5<x<16,x1f ( x ) = \left\{ \begin{array} { l l } 6 , & x \leq - 5 \\a x + b , & - 5 < x < 1 \\- 6 , & x \geq 1\end{array} \right. is continuous on the entire real line.

(Multiple Choice)
4.8/5
(27)

Determine the following limit. (Hint: Use the graph to calculate the limit.) limx1(x2+4)\lim _ { x \rightarrow 1 } \left( x ^ { 2 } + 4 \right)  Determine the following limit. (Hint: Use the graph to calculate the limit.)  \lim _ { x \rightarrow 1 } \left( x ^ { 2 } + 4 \right)

(Multiple Choice)
4.7/5
(44)

 Find the x-values (if any) at which the function f(x)=x+2x2+6x+8 is not continuous. \text { Find the } x \text {-values (if any) at which the function } f ( x ) = \frac { x + 2 } { x ^ { 2 } + 6 x + 8 } \text { is not continuous. } Which of the discontinuities are removable?

(Multiple Choice)
4.8/5
(32)

Find the limit (if it exists). limΔx0(x+Δx)29(x+Δx)+2(x29x+2)Δx\lim _ { \Delta x \rightarrow 0 } \frac { ( x + \Delta x ) ^ { 2 } - 9 ( x + \Delta x ) + 2 - \left( x ^ { 2 } - 9 x + 2 \right) } { \Delta x }

(Multiple Choice)
4.9/5
(33)

 Find all values of c such that f is continuous on (,)\text { Find all values of } c \text { such that } f \text { is continuous on } ( - \infty , \infty ) \text {. } f(x)={4x2,xcx,x>cf ( x ) = \left\{ \begin{array} { l l } 4 - x ^ { 2 } , & x \leq c \\x , & x > c\end{array} \right.

(Multiple Choice)
4.7/5
(34)

 Use a graphing utility to graph the function f(x)=cscπx2 and determine the \text { Use a graphing utility to graph the function } f ( x ) = \csc \frac { \pi x } { 2 } \text { and determine the } following one-sided limit. limx2f(x)\lim _ { x \rightarrow 2 ^ { - } } f ( x )

(Multiple Choice)
4.7/5
(44)

 Suppose that limxcf(x)=13 and limxcg(x)=10. Find the following limit. \text { Suppose that } \lim _ { x \rightarrow c } f ( x ) = - 13 \text { and } \lim _ { x \rightarrow c } g ( x ) = - 10 \text {. Find the following limit. } limxc[f(x)+g(x)]\lim _ { x \rightarrow c } [ f ( x ) + g ( x ) ]

(Multiple Choice)
4.8/5
(26)

A 30 -foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of r=2x900x2ft/secr = \frac { 2 x } { \sqrt { 900 - x ^ { 2 } } } \mathrm { ft } / \mathrm { sec } , where xx is the distance between the base of the ladder and the house. Find the rate rr when xx is 18 feet.  A 30 -foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate of  r = \frac { 2 x } { \sqrt { 900 - x ^ { 2 } } } \mathrm { ft } / \mathrm { sec } , where  x  is the distance between the base of the ladder and the house. Find the rate  r  when  x  is 18 feet.

(Multiple Choice)
4.8/5
(40)

 Find limΔx0f(x+Δx)f(x)Δx where f(x)=4x3\text { Find } \lim _ { \Delta x \rightarrow 0 } \frac { f ( x + \Delta x ) - f ( x ) } { \Delta x } \text { where } f ( x ) = 4 x - 3 \text {. }

(Multiple Choice)
4.8/5
(31)

 Discuss the continuity of the function f(x)=x24x2\text { Discuss the continuity of the function } f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 } \text {. } \text { Discuss the continuity of the function } f ( x ) = \frac { x ^ { 2 } - 4 } { x - 2 } \text {. }

(Multiple Choice)
4.8/5
(29)

Find the value of c guaranteed by the Intermediate Value Theorem. f(x)=x25xx3,[92,18],f(c)=6f ( x ) = \frac { x ^ { 2 } - 5 x } { x - 3 } , \left[ \frac { 9 } { 2 } , 18 \right] , f ( c ) = 6

(Multiple Choice)
4.9/5
(42)

 A long distance phone service charges $0.35 for the first 10 minutes and $0.1 for \text { A long distance phone service charges } \$ 0.35 \text { for the first } 10 \text { minutes and } \$ 0.1 \text { for } each additional minute or fraction thereof. Use the greatest integer function to write the cost CC of a call in terms of time tt (in minutes).

(Multiple Choice)
4.9/5
(43)

the rectangles in the following graph to approximate the area of the region bounded by y=sinx,y=0,x=0y = \sin x , y = 0 , x = 0 , and x=πx = \pi .  the rectangles in the following graph to approximate the area of the region bounded by  y = \sin x , y = 0 , x = 0 , and  x = \pi .

(Multiple Choice)
4.9/5
(26)

 Suppose that limxcf(x)=7 and limxcg(x)=3. Find the following limit. \text { Suppose that } \lim _ { x \rightarrow c } f ( x ) = 7 \text { and } \lim _ { x \rightarrow c } g ( x ) = 3 \text {. Find the following limit. } limxcf(x)g(x)\lim _ { x \rightarrow c } \frac { f ( x ) } { g ( x ) }

(Multiple Choice)
5.0/5
(24)

Find the constant aa such that the function f(x)={4sinxx,x<0a+7x,x0f ( x ) = \left\{ \begin{array} { r r } - 4 \cdot \frac { \sin x } { x } , & x < 0 \\a + 7 x , & x \geq 0\end{array} \right. is continuous on the entire real line.

(Multiple Choice)
4.8/5
(40)

 Consider the function f(x)=x and the point P(81,9) on the graph of f\text { Consider the function } f ( x ) = \sqrt { x } \text { and the point } P ( 81,9 ) \text { on the graph of } f \text {. } Find the slope of the secant line passing through P(81,9)P ( 81,9 ) and Q(x,f(x))Q ( x , f ( x ) ) for x=1x = 1 . Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(32)
Showing 41 - 60 of 92
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)