Exam 2: A Preview of Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the limit. limxsinxsin\lim _ { x \rightarrow \sin x } \sin x3π4x \rightarrow \frac { 3 \pi } { 4 }

(Multiple Choice)
4.9/5
(34)

Find the limit. limx6xx2+8\lim _ { x \rightarrow 6 } \frac { x } { x ^ { 2 } + 8 }

(Multiple Choice)
5.0/5
(26)

Find the limit (if it exists). limxtanπx\lim x \tan \pi x x12x \rightarrow \frac { 1 } { 2 }

(Multiple Choice)
4.9/5
(37)

Use the graph to determine the following limits, and discuss the continuity of the function at x=3x = - 3 . (i) limx3+f(x)\lim _ { x \rightarrow - 3 ^ { + } } f ( x ) (ii) limx3f(x)\lim _ { x \rightarrow - 3 ^ { - } } f ( x ) (iii) limx3f(x)\lim _ { x \rightarrow - 3 } f ( x )  Use the graph to determine the following limits, and discuss the continuity of the function at  x = - 3 . (i)  \lim _ { x \rightarrow - 3 ^ { + } } f ( x )  (ii)  \lim _ { x \rightarrow - 3 ^ { - } } f ( x )  (iii)  \lim _ { x \rightarrow - 3 } f ( x )

(Multiple Choice)
4.9/5
(39)

Find the limit (if it exists). limx36x6x36\lim _ { x \rightarrow 36 ^ { - } } \frac { \sqrt { x } - 6 } { x - 36 }

(Multiple Choice)
4.8/5
(31)

Use the graph as shown to determine the following limits, and discuss the continuity of the function at x=3x = 3 . (i) limx3+f(x)\lim _ { x \rightarrow 3 ^ { + } } f ( x ) (ii) limx3f(x)\lim _ { x \rightarrow 3 ^ { - } } f ( x ) (iii) limx3f(x)\lim _ { x \rightarrow 3 } f ( x )  Use the graph as shown to determine the following limits, and discuss the continuity of the function at  x = 3  .  (i)  \lim _ { x \rightarrow 3 ^ { + } } f ( x )  (ii)  \lim _ { x \rightarrow 3 ^ { - } } f ( x )  (iii)  \lim _ { x \rightarrow 3 } f ( x )

(Multiple Choice)
4.8/5
(35)

Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the Problem seems to require calculus, use a graphical or numerical approach to estimate the Solution. A cyclist is riding on a path whose elevation is modeled by the function f(x)=0.2xf ( x ) = 0.2 x where xx and f(x)f ( x ) are measured in miles. Find the rate of change of elevation when x=5x = 5 . y=f(x)y = f ( x )  Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the Problem seems to require calculus, use a graphical or numerical approach to estimate the Solution. A cyclist is riding on a path whose elevation is modeled by the function  f ( x ) = 0.2 x  where  x  and  f ( x )  are measured in miles. Find the rate of change of elevation when  x = 5 .  y = f ( x )

(Multiple Choice)
4.8/5
(24)

Find the limit. limx14+x3x14\lim _ { x \rightarrow 14 ^ { + } } \frac { x - 3 } { x - 14 }

(Multiple Choice)
4.8/5
(26)

 Consider the length of the graph of f(x)=5/x from (1,5) to (5,1)\text { Consider the length of the graph of } f ( x ) = 5 / x \text { from } ( 1,5 ) \text { to } ( 5,1 ) Approximate the length of the curve by finding the sum of the lengths of four line segments, as shown in following figure. Round your answer to two decimal places. \text { Consider the length of the graph of } f ( x ) = 5 / x \text { from } ( 1,5 ) \text { to } ( 5,1 )  Approximate the length of the curve by finding the sum of the lengths of four line segments, as shown in following figure. Round your answer to two decimal places.

(Multiple Choice)
5.0/5
(32)

Complete the table and use the result to estimate the limit. limx0cos(3x)13x\lim _ { x \rightarrow 0 } \frac { \cos ( 3 x ) - 1 } { 3 x } x -0.1 -0.01 -0.001 0.001 0.01 0.1 f(x)

(Multiple Choice)
4.8/5
(38)

Find the value of c guaranteed by the Intermediate Value Theorem. f(x)=x22x+8,[2,6],f(c)=11f ( x ) = x ^ { 2 } - 2 x + 8 , [ 2,6 ] , f ( c ) = 11

(Multiple Choice)
4.8/5
(31)

 Find the x-values (if any) at which f(x)=xx22x is not continuous. \text { Find the } x \text {-values (if any) at which } f ( x ) = \frac { x } { x ^ { 2 } - 2 x } \text { is not continuous. }

(Multiple Choice)
4.9/5
(28)

Find the xx -values (if any) at which the function f(x)=13x215x15f ( x ) = 13 x ^ { 2 } - 15 x - 15 is not continuous. Which of the discontinuities are removable?

(Multiple Choice)
4.9/5
(35)

A ring has a inner circumference of 9 centimeters. If the ring's inner circumference can vary between 8 centimeters and 10 centimeters how can the radius vary? Round your answer to Five decimal places.

(Multiple Choice)
4.8/5
(40)

 Let f(x)={x2+5,x11,x=1\text { Let } f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } + 5 , & x \neq 1 \\1 , & x = 1\end{array} \right. Determine the following limit.m(Hint: Use the graph to calculate the limit.) limx1f(x)\lim _ { x \rightarrow 1 } f ( x ) \text { Let } f ( x ) = \left\{ \begin{array} { l l }  x ^ { 2 } + 5 , & x \neq 1 \\ 1 , & x = 1 \end{array} \right.  Determine the following limit.m(Hint: Use the graph to calculate the limit.)  \lim _ { x \rightarrow 1 } f ( x )

(Multiple Choice)
4.8/5
(35)

 A petrol car is parked 35 feet from a long warehouse (see figure). The revolving \text { A petrol car is parked } 35 \text { feet from a long warehouse (see figure). The revolving } light on top of the car turns at a rate of 12\frac { 1 } { 2 } revolution per second. The rate at which the light beam moves along the wall is r=35πsec2θft/secr = 35 \pi \mathrm { sec } ^ { 2 } \theta \mathrm { ft } / \mathrm { sec } . Find the rate rr when θ\theta is π6\frac { \pi } { 6 } . \text { A petrol car is parked } 35 \text { feet from a long warehouse (see figure). The revolving }  light on top of the car turns at a rate of  \frac { 1 } { 2 }  revolution per second. The rate at which the light beam moves along the wall is  r = 35 \pi \mathrm { sec } ^ { 2 } \theta \mathrm { ft } / \mathrm { sec } . Find the rate  r  when  \theta  is  \frac { \pi } { 6 } .

(Multiple Choice)
4.7/5
(27)

Determine the limit (if it exists). limx0sinx(1cosx)2x8\lim _ { x \rightarrow 0 } \frac { \sin x ( 1 - \cos x ) } { 2 x ^ { 8 } }

(Multiple Choice)
4.9/5
(36)

Use the rectangles in the graph given below to approximate the area of the region bounded by y=4/x,y=0,x=1y = 4 / x , y = 0 , x = 1 , and x=4x = 4 Round your answer to three decimal places.  Use the rectangles in the graph given below to approximate the area of the region bounded by  y = 4 / x , y = 0 , x = 1 , and  x = 4  Round your answer to three decimal places.

(Multiple Choice)
4.8/5
(36)

 Find all vertical asymptotes (if any) of the function f(x)=x2+4x+3x34x2x+4\text { Find all vertical asymptotes (if any) of the function } f ( x ) = \frac { x ^ { 2 } + 4 x + 3 } { x ^ { 3 } - 4 x ^ { 2 } - x + 4 } \text {. }

(Multiple Choice)
4.9/5
(25)

Find all the vertical asymptotes (if any) of the graph of the function f(x)=1+xx2(1x)f ( x ) = \frac { 1 + x } { x ^ { 2 } ( 1 - x ) }

(Multiple Choice)
4.9/5
(41)
Showing 61 - 80 of 92
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)