Exam 2: A Preview of Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the Problem seems to require calculus, use a graphical or numerical approach to estimate the Solution. A cyclist is riding on a path whose elevation is modeled by the function f(x)=0.08(16xx2)f ( x ) = 0.08 \left( 16 x - x ^ { 2 } \right) where xx and f(x)f ( x ) are measured in miles. Find the rate of change of elevation when x=4x = 4 .  Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the Problem seems to require calculus, use a graphical or numerical approach to estimate the Solution. A cyclist is riding on a path whose elevation is modeled by the function  f ( x ) = 0.08 \left( 16 x - x ^ { 2 } \right)  where  x  and  f ( x )  are measured in miles. Find the rate of change of elevation when  x = 4 .

(Multiple Choice)
4.8/5
(33)

Complete the table and use the result to estimate the limit. limx3x3x216x+39\lim _ { x \rightarrow 3 } \frac { x - 3 } { x ^ { 2 } - 16 x + 39 } x 2.9 2.99 2.999 3.001 3.01 3.1 f(x)

(Multiple Choice)
4.9/5
(37)

Find the limit. limx0(x21x)\lim _ { x \rightarrow 0 ^ { - } } \left( x ^ { 2 } - \frac { 1 } { x } \right)

(Multiple Choice)
4.8/5
(28)

 Consider the function f(x)=11xx2 and the point p(4,28) on the graph of \text { Consider the function } f ( x ) = 11 x - x ^ { 2 } \text { and the point } p ( 4,28 ) \text { on the graph of } ff . Find the slope of the secant line passing through P(4,28)P ( 4,28 ) and Q(x,f(x))Q ( x , f ( x ) ) for x=5x = 5 . Round your answer to one decimal place.

(Multiple Choice)
4.8/5
(37)

 A petrol car is parked 65 feet from a long warehouse (see figure). The revolving \text { A petrol car is parked } 65 \text { feet from a long warehouse (see figure). The revolving } light on top of the car turns at a rate of 12\frac { 1 } { 2 } revolution per second. The rate at which the light beam moves along the wall is r=65πsec2θft/secr = 65 \pi \sec ^ { 2 } \theta \mathrm { ft } / \mathrm { sec } . Find the limit of rr as θ(π/2)\theta \rightarrow ( \pi / 2 ) ^ { - } . \text { A petrol car is parked } 65 \text { feet from a long warehouse (see figure). The revolving }  light on top of the car turns at a rate of  \frac { 1 } { 2 }  revolution per second. The rate at which the light beam moves along the wall is  r = 65 \pi \sec ^ { 2 } \theta \mathrm { ft } / \mathrm { sec } . Find the limit of  r  as  \theta \rightarrow ( \pi / 2 ) ^ { - } .

(Multiple Choice)
4.7/5
(31)

Find the limit (if it exists). limx8x+8x264\lim _ { x \rightarrow - 8 } \frac { x + 8 } { x ^ { 2 } - 64 }

(Multiple Choice)
4.8/5
(32)

 Find the limit (if it exists). Note that f(x)=(x) represents the greatest integer \text { Find the limit (if it exists). Note that } f ( x ) = ( | x | ) \text { represents the greatest integer } function. limx5+(2x[x])\lim _ { x \rightarrow 5 ^ { + } } ( 2 x - [ | x | ] )

(Multiple Choice)
4.9/5
(39)

Determine the following limit. (Hint: Use the graph to calculate the limit.) limx21x2\lim _ { x \rightarrow 2 } \frac { 1 } { x - 2 }  Determine the following limit. (Hint: Use the graph to calculate the limit.)  \lim _ { x \rightarrow 2 } \frac { 1 } { x - 2 }

(Multiple Choice)
4.9/5
(28)

 Let f(x)=4x2 and g(x)=x3. Find the limit. \text { Let } f ( x ) = 4 x - 2 \text { and } g ( x ) = x ^ { 3 } \text {. Find the limit. } limx1g(f(x))\lim _ { x \rightarrow 1 } g ( f ( x ) )

(Multiple Choice)
4.9/5
(37)

 Find all the vertical asymptotes (if any) of the graph of the function f(x)=x3+8x+2\text { Find all the vertical asymptotes (if any) of the graph of the function } f ( x ) = \frac { x ^ { 3 } + 8 } { x + 2 } \text {. }

(Multiple Choice)
4.8/5
(35)

Complete the table and use the result to estimate the limit. limx71x314x7\lim _ { x \rightarrow 7 } \frac { \frac { 1 } { x - 3 } - \frac { 1 } { 4 } } { x - 7 } x 6.9 6.99 6.999 7.001 7.01 7.1 f(x)

(Multiple Choice)
4.9/5
(35)

 Use a graphing utility to graph the function f(x)=x22x+4x3+8 and determine the \text { Use a graphing utility to graph the function } f ( x ) = \frac { x ^ { 2 } - 2 x + 4 } { x ^ { 3 } + 8 } \text { and determine the } one-sided limit limx2+f(x)\lim _ { x \rightarrow - 2 ^ { + } } f ( x ) .

(Multiple Choice)
4.9/5
(43)

 Find the vertical asymptotes (if any) of the function f(x)=tan(15x)\text { Find the vertical asymptotes (if any) of the function } f ( x ) = \tan ( 15 x ) \text {. }

(Multiple Choice)
4.9/5
(35)

 Find the x-values (if any) at which f(x)=x3x3 is not continuous. \text { Find the } x \text {-values (if any) at which } f ( x ) = \frac { | x - 3 | } { x - 3 } \text { is not continuous. }

(Multiple Choice)
4.8/5
(32)

Find the limit (if it exists). limx11+11xx2121\lim _ { x \rightarrow 11 ^ { + } } \frac { 11 - x } { x ^ { 2 } - 121 }

(Multiple Choice)
4.9/5
(32)

Determine the following limit. (Hint: Use the graph to calculate the limit.) limx1(5x)\lim _ { x \rightarrow 1 } ( 5 - x )  Determine the following limit. (Hint: Use the graph to calculate the limit.)  \lim _ { x \rightarrow 1 } ( 5 - x )

(Multiple Choice)
4.9/5
(35)

Find the lmit. limxπtan(x3)\lim _ { x \rightarrow \pi } \tan \left( \frac { x } { 3 } \right)

(Multiple Choice)
4.8/5
(39)

 Suppose that limxcf(x)=5. Find the following limit. \text { Suppose that } \lim _ { x \rightarrow c } f ( x ) = 5 \text {. Find the following limit. } limxc[f(x)3]\lim _ { x \rightarrow c } \left[ f ( x ) ^ { 3 } \right]

(Multiple Choice)
4.9/5
(48)

Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If theProblem seems to require calculus, use a graphical or numerical approach to estimate the Solution. Find the area of the shaded region. Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If theProblem seems to require calculus, use a graphical or numerical approach to estimate the Solution. Find the area of the shaded region.

(Multiple Choice)
4.8/5
(31)

 Suppose that limxcf(x)=5. Find the following limit. \text { Suppose that } \lim _ { x \rightarrow c } f ( x ) = - 5 \text {. Find the following limit. } limxc3f(x)\lim _ { x \rightarrow c } 3 f ( x )

(Multiple Choice)
4.9/5
(43)
Showing 21 - 40 of 92
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)