Exam 4: Extrema on an Interval

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

A rectangular page is to contain square inches of print. The margins on each side are 1 inch. Find the dimensions of the page such that the least amount of paper is used.

(Multiple Choice)
4.9/5
(38)

 Locate the absolute extrema of the function f(x)=sinπx on the closed interval \text { Locate the absolute extrema of the function } f ( x ) = \sin \pi x \text { on the closed interval } [0,13]\left[ 0 , \frac { 1 } { 3 } \right]

(Multiple Choice)
4.9/5
(44)

Sketch a graph of the function f(x)=xtanx over the interval 3π2<x<3π2f ( x ) = x \tan x \text { over the interval } - \frac { 3 \pi } { 2 } < x < \frac { 3 \pi } { 2 }

(Multiple Choice)
4.9/5
(36)

Sketch a graph of the function f(x)=3x6sinx over the interval 0x2πf ( x ) = 3 x - 6 \sin x \text { over the interval } 0 \leq x \leq 2 \pi

(Multiple Choice)
4.9/5
(40)

 Locate the absolute extrema of the function f(x)=x312x on the closed interval \text { Locate the absolute extrema of the function } f ( x ) = x ^ { 3 } - 12 x \text { on the closed interval } [0,4].[ 0,4 ] .

(Multiple Choice)
4.8/5
(34)

A rectangular page is to contain square inches of print. The margins on each side are 1 inch. Find the dimensions of the page such that the least amount of paper is used.

(Multiple Choice)
4.9/5
(28)

Suppose the deflection D of a beam of length L is D=6x49Lx3+2L2x2D = 6 x ^ { 4 } - 9 L x ^ { 3 } + 2 L ^ { 2 } x ^ { 2 } where xx is the distance from one end of the beam. Find the value of x that yields the maximum deflection.

(Multiple Choice)
4.8/5
(24)

 The graph of f is shown. Graph f,f and f on the same set of coordinate axes. \text { The graph of } f \text { is shown. Graph } f , f ^ { \prime } \text { and } f ^ { \prime \prime } \text { on the same set of coordinate axes. } \text { The graph of } f \text { is shown. Graph } f , f ^ { \prime } \text { and } f ^ { \prime \prime } \text { on the same set of coordinate axes. }

(Multiple Choice)
4.8/5
(36)

The graph of f is shown below. On what interval is ft an increasing function? f ^ {t } \text { an increasing function? }  The graph of f is shown below. On what interval is  f ^ {t } \text { an increasing function? }

(Multiple Choice)
4.7/5
(27)

 For the function f(x)=(x1)23 : \text { For the function } f ( x ) = ( x - 1 ) ^ { \frac { 2 } { 3 } } \text { : } (a) Find the critical numbers of f (if any); (b) Find the open intervals where the function is increasing or decreasing; and (c) Apply the First Derivative Test to identify all relative extrema. Use a graphing utility to confirm your results.

(Multiple Choice)
4.9/5
(32)

Find the open interval(s) on which the function f(x)=cos2(3x)f ( x ) = \cos ^ { 2 } ( 3 x ) is increasing in the interval Round numerical values in your answer to three decimal places.

(Multiple Choice)
4.9/5
(42)

 Determine the open intervals on which the graph of y=6x3+8x2+6x5 is \text { Determine the open intervals on which the graph of } y = - 6 x ^ { 3 } + 8 x ^ { 2 } + 6 x - 5 \text { is } concave downward or concave upward.

(Multiple Choice)
4.9/5
(35)

Match the function f(x)=4x+35x+6f ( x ) = \frac { 4 x + 3 } { 5 x + 6 } , use a graphing utility to complete the table and estimate the limit as x approaches infinity. x 1 1 1 1 1 1 1 f(x)

(Multiple Choice)
4.7/5
(37)

Find all relative extrema of the function f(x)=x2/36f ( x ) = x ^ { 2 / 3 } - 6 . Use the Second Derivative Test where applicable.

(Multiple Choice)
4.8/5
(40)

A ball bearing is placed on an inclined plane and begins to roll. The angle of elevation of the plane is θ=π9\theta = \frac { \pi } { 9 } radians. The distance (in meters) the ball bearing rolls in tt seconds is s(t)=4.9(sinθ)t2s ( t ) = 4.9 ( \sin \theta ) t ^ { 2 } . Determine the value of st(t)s ^ { t } ( t ) after one second. Round numerical values in your answer to one decimal place.

(Multiple Choice)
4.8/5
(37)

Determine whether Rolle's Theorem can be applied to the function f(x)=cosπx on f ( x ) = \cos \pi x \text { on } the closed interval [12,12]\left[ - \frac { 1 } { 2 } , \frac { 1 } { 2 } \right] . If Rolle's Theorem can be applied, find all numbers cc in the open interval (12,12)\left( - \frac { 1 } { 2 } , \frac { 1 } { 2 } \right) such that ft(c)=0f ^ { t } ( c ) = 0 .

(Multiple Choice)
4.8/5
(42)

 The graph of f is shown. Graph f,f and f on the same set of coordinate axes. \text { The graph of } f \text { is shown. Graph } f , f ^ { \prime } \text { and } f ^ { \prime \prime } \text { on the same set of coordinate axes. } \text { The graph of } f \text { is shown. Graph } f , f ^ { \prime } \text { and } f ^ { \prime \prime } \text { on the same set of coordinate axes. }

(Multiple Choice)
4.9/5
(33)

Find the limit. limx(34x+2x4)\lim _ { x \rightarrow \infty } \left( \frac { 3 } { 4 } x + \frac { 2 } { x ^ { 4 } } \right)

(Multiple Choice)
4.8/5
(26)

Analyze and sketch a graph of the function f(x)=x1+x4f ( x ) = \frac { x } { 1 + x ^ { 4 } }

(Multiple Choice)
4.8/5
(41)

 Identify the open intervals where the function f(x)=6x26x+4 is increasing or \text { Identify the open intervals where the function } f ( x ) = 6 x ^ { 2 } - 6 x + 4 \text { is increasing or } decreasing.

(Multiple Choice)
4.7/5
(35)
Showing 21 - 40 of 147
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)