Exam 4: Extrema on an Interval

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

A company introduces a new product for which the number of units sold S is S(t)=300(7105+t)S ( t ) = 300 \left( 7 - \frac { 10 } { 5 + t } \right) where tt is the time in months since the product was introduced. Find the average value of S(t)S ( t ) during the first year.

(Multiple Choice)
4.8/5
(26)

Determine whether Rolle's Theorem can be applied to the function f(x)=(x+3)(x+2)2f ( x ) = ( x + 3 ) ( x + 2 ) ^ { 2 } on the closed interval (3,2)( - 3 , - 2 ) . If Rolle's Theorem can be applied, find all numbers cc in the open interval (3,2)( - 3 , - 2 ) such that ft(c)=0f ^ { t} ( c ) = 0 .

(Multiple Choice)
4.9/5
(44)

Find two positive numbers whose product is 181 and whose sum is a minimum.

(Multiple Choice)
4.9/5
(34)

Find the limit. limx7x+664x2+2x\lim _ { x \rightarrow \infty } \frac { 7 x + 6 } { \sqrt { 64 x ^ { 2 } + 2 x } }

(Multiple Choice)
4.8/5
(40)

 Find the value of the derivative (if it exists) of f(x)=(x2)4/5 at the indicated \text { Find the value of the derivative (if it exists) of } f ( x ) = ( x - 2 ) ^ { 4 / 5 } \text { at the indicated } extremum. \text { Find the value of the derivative (if it exists) of } f ( x ) = ( x - 2 ) ^ { 4 / 5 } \text { at the indicated }  extremum.

(Multiple Choice)
4.9/5
(30)

 Use differentials to approximate the value of 25.1. Round your answer to four \text { Use differentials to approximate the value of } \sqrt { 25.1 } \text {. Round your answer to four } decimal places.

(Multiple Choice)
4.8/5
(35)

The resistance R of a certain type of resistor is R=0.001T43T+400,R = \sqrt { 0.001 T ^ { 4 } - 3 T + 400 } , where R is measured in ohms and the temperature T is measured in degrees Celsius. Use a computer algebra System to find dRdT.\frac { d R } { d T } .

(Multiple Choice)
4.9/5
(41)

 Determine the open intervals on which the graph of f(x)=3x2+7x3 is concave \text { Determine the open intervals on which the graph of } f ( x ) = 3 x ^ { 2 } + 7 x - 3 \text { is concave } downward or concave upward.

(Multiple Choice)
4.8/5
(27)

Locate the absolute extrema of the function g(x)=4x+55 on the closed interval g ( x ) = \frac { 4 x + 5 } { 5 } \text { on the closed interval } (0,5)( 0,5 )

(Multiple Choice)
4.8/5
(34)

Determine whether the Mean Value Theorem can be applied to the function f(x)=2sinx+sin2xf ( x ) = 2 \sin x + \sin 2 x on the closed interval [4π,5π][ 4 \pi , 5 \pi ] . If the Mean Value Theorem can be applied, find all numbers cc in the open interval (4π,5π)( 4 \pi , 5 \pi ) such that ft(c)=f(5π)f(4π)5π4πf ^ {t } ( c ) = \frac { f ( 5 \pi ) - f ( 4 \pi ) } { 5 \pi - 4 \pi } .

(Multiple Choice)
4.7/5
(51)

A meteorologist measures the atmospheric pressure P (in kilograms per square meter) at altitude h (in kilometers). The data are shown below. Find the rate of change of the pressure with Respect to altitude  when h=10 using the relation lnP=0.1499h+10.3016. Round your answer to \text { when } h = 10 \text { using the relation } \ln P = - 0.1499 h + 10.3016 \text {. Round your answer to } one decimal place. h 0 5 10 15 20 p 28,085 15,169 6,458 3,371 1405

(Multiple Choice)
4.8/5
(47)

Analyze and sketch a graph of the function y=x4x2y = x \sqrt { 4 - x ^ { 2 } }

(Multiple Choice)
4.8/5
(31)

Analyze the graph of the function f(x)=x+4arctan(x). Determine any intercepts, f ( x ) = - x + 4 \arctan ( x ) . \text { Determine any intercepts, } relative extrema, points of inflection and asymptotes. Also determine where the graph is increasing or decreasing and concave up or concave down. Then identify the graph from the choices below.

(Multiple Choice)
4.8/5
(40)

A company introduces a new product for which the number of units sold S is S(t)=300(5103+t)S ( t ) = 300 \left( 5 - \frac { 10 } { 3 + t } \right) where tt is the time in months since the product was introduced. During what month does St(t)S ^ { t } ( t ) equal the average value of S(t)S ( t ) during the first year?

(Multiple Choice)
4.7/5
(27)

 Find the relative maxima of f(x)=cos2(4x) on the interval (0,3.142) by applying \text { Find the relative maxima of } f ( x ) = \cos ^ { 2 } ( 4 x ) \text { on the interval } ( 0,3.142 ) \text { by applying } the First Derivative Test. Round numerical values in your answer to three decimal places.

(Multiple Choice)
4.9/5
(29)

 Find all critical numbers of the function f(x)=sin26x+cos6x,0<x<π3\text { Find all critical numbers of the function } f ( x ) = \sin ^ { 2 } 6 x + \cos 6 x , 0 < x < \frac { \pi } { 3 } \text {. }

(Multiple Choice)
4.9/5
(43)

Find the relative minima of f(x)=cos2(9x) on the interval (0,1.396) by applying f ( x ) = \cos ^ { 2 } ( 9 x ) \text { on the interval } ( 0,1.396 ) \text { by applying } the First Derivative Test. Round numerical values in your answer to three decimal places.

(Multiple Choice)
4.8/5
(39)

 Compare dy and Δy for y=4x23 at x=1 with Δx=dx=0.06. Give your \text { Compare } d y \text { and } \Delta y \text { for } y = - 4 x ^ { 2 } - 3 \text { at } x = - 1 \text { with } \Delta x = d x = - 0.06 \text {. Give your } answers to four decimal places.

(Multiple Choice)
4.7/5
(27)

The graph of a function f is is shown below. Sketch the graph of the derivative ff ^ { \prime } \text {. }  The graph of a function f is is shown below. Sketch the graph of the derivative  f ^ { \prime } \text {. }

(Multiple Choice)
4.9/5
(37)

The vsum of the perimeters of an equilateral triangle and a square is 19. Find the dimensions of the triangle and the square that produce a minimum total area.

(Multiple Choice)
4.9/5
(36)
Showing 101 - 120 of 147
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)