Exam 4: Extrema on an Interval

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Suppose a manufacturer has determined that the total cost C of operating a factory is C=0.6x2+14x+54,000C = 0.6 x ^ { 2 } + 14 x + 54,000 where xx is the number of units produced. At what level of production will the average cost per unit be minimized? (The average cost per unit is C/x\mathrm { C } / x .)

(Multiple Choice)
4.7/5
(31)

 Determine whether Rolle’s Theorem can be applied to f(x)=x2+10x on the closed \text { Determine whether Rolle's Theorem can be applied to } f ( x ) = - x ^ { 2 } + 10 x \text { on the closed } interval [0,10][ 0,10 ] . If Rolle's Theorem can be applied, find all values of cc in the open interval (0,10)( 0,10 ) such that ft(c)=0f ^ { t } ( c ) = 0

(Multiple Choice)
4.8/5
(32)

Locate any relative extrema and inflection points of the function y=x1515lnxy = \frac { x ^ { 15 } } { 15 } - \ln x . Use a graphing utility to confirm your results.

(Multiple Choice)
4.7/5
(31)

 For the function f(x)=4x348x2+6 : \text { For the function } f ( x ) = 4 x ^ { 3 } - 48 x ^ { 2 } + 6 \text { : } (a)Find the critical numbers of ff (if any); (b) Find the open intervals where the function is increasing or decreasing; and (c) Apply the First Derivative Test to identify all relative extrema. Then use a graphing utility to confirm your results.

(Multiple Choice)
4.7/5
(28)

Determine the x-coordinate(s) of any relative extrema and inflection points of the function y=x5lnx9y = x ^ { 5 } \ln \frac { x } { 9 }

(Multiple Choice)
4.8/5
(28)

Find the points of inflection and discuss the concavity of the function f(x)=8x2cosxf ( x ) = - 8 x - 2 \cos x on the interval [0,2π][ 0,2 \pi ]

(Multiple Choice)
4.8/5
(25)

Analyze and sketch a graph of the function y=x33x2+3y = x ^ { 3 } - 3 x ^ { 2 } + 3

(Multiple Choice)
4.8/5
(38)

Find the length and width of a rectangle that has an area of 968 square feet and whose perimeter is a minimum.

(Multiple Choice)
4.9/5
(29)

A plane begins its takeoff at 2:00 P.M. on a 2200-mile flight. After 12.5 hours, the plane arrives at its destination. Explain why there are at least two times during the flight when the Speed of the plane is 100 miles per hour.

(Multiple Choice)
4.9/5
(43)

Match the function f(x)=66xx2+2f ( x ) = 6 - \frac { 6 x } { \sqrt { x ^ { 2 } + 2 } } , use a graphing utility to complete the table and estimate the limit as x approaches infinity. x 1 1 1 1 1 1 1 f(x)

(Multiple Choice)
5.0/5
(37)

Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window (see figure). Find the dimensions of a Norman window of maximum area if the Total perimeter is 38 feet. Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window (see figure). Find the dimensions of a Norman window of maximum area if the Total perimeter is 38 feet.

(Multiple Choice)
4.8/5
(36)

Find all points of inflection on the graph of the function f(x)=12x4+2x3f ( x ) = \frac { 1 } { 2 } x ^ { 4 } + 2 x ^ { 3 }

(Multiple Choice)
4.9/5
(33)

Analyze and sketch a graph of the function y=23xx3y = 2 - 3 x - x ^ { 3 }

(Multiple Choice)
4.7/5
(45)

Find the differential dy of the function y=2x3/7y = 2 x ^ { 3 / 7 }

(Multiple Choice)
4.9/5
(31)

Find the point on the graph of the function f(x)=(x+1)2f ( x ) = ( x + 1 ) ^ { 2 } that is closest to the point (5,1)( - 5,1 ) . Round all numerical values in your answer to four decimal places.

(Multiple Choice)
4.9/5
(34)

 Find the cubic function of the form f(x)=ax3+bx2+cx+d, where a0 and the \text { Find the cubic function of the form } f ( x ) = a x ^ { 3 } + b x ^ { 2 } + c x + d \text {, where } a \neq 0 \text { and the } coefficients a,b,c,da , b , c , d are real numbers, which satisfies the conditions given below. Relative maximum: (3,0)( 3,0 ) Relative minimum: (5,2)( 5 , - 2 ) Inflection point: (4,1)( 4 , - 1 )

(Multiple Choice)
4.7/5
(30)

A rectangle is bounded by the x- and y-axes and the graph of y=(5x)2y = \frac { ( 5 - x ) } { 2 } figure). What length and width should the rectangle have so that its area is a maximum?  A rectangle is bounded by the x- and y-axes and the graph of  y = \frac { ( 5 - x ) } { 2 }  figure). What length and width should the rectangle have so that its area is a maximum?

(Multiple Choice)
4.9/5
(37)

 Use the graph of the function y=x343x given below to estimate the open \text { Use the graph of the function } y = \frac { x ^ { 3 } } { 4 } - 3 x \text { given below to estimate the open } intervals on which the function is increasing or decreasing. \text { Use the graph of the function } y = \frac { x ^ { 3 } } { 4 } - 3 x \text { given below to estimate the open }  intervals on which the function is increasing or decreasing.

(Multiple Choice)
4.7/5
(37)

 Locate the absolute extrema of the function g(t)=t2t2+2 on the closed interval \text { Locate the absolute extrema of the function } g ( t ) = \frac { t ^ { 2 } } { t ^ { 2 } + 2 } \text { on the closed interval } [3,3][ - 3,3 ] \text {. }

(Multiple Choice)
4.9/5
(31)

 Locate the absolute extrema of the given function on the closed interval [60,60]\text { Locate the absolute extrema of the given function on the closed interval } [ - 60,60 ] \text {. } f(x)=60xx2+36f ( x ) = \frac { 60 x } { x ^ { 2 } + 36 }

(Multiple Choice)
4.7/5
(30)
Showing 81 - 100 of 147
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)