Exam 6: Slope Fields and Eulers Method

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the particular solution of the differential equation 4xyty=x32x that 4 x y ^ { t } - y = x ^ { 3 } - 2 x \text { that } satisfies the boundary condition y(223)=0y \left( \sqrt { \frac { 22 } { 3 } } \right) = 0 .

(Multiple Choice)
4.8/5
(46)

 The rate of change of N is proportional to N. When t=0,N=200 and when \text { The rate of change of } N \text { is proportional to } N \text {. When } t = 0 , N = 200 \text { and when } t=1,N=360t = 1 , N = 360 . What is the value of NN when t=4t = 4 ? Round your answer to three decimal places.

(Multiple Choice)
4.9/5
(40)

Use Euler's Method to make a table of values for the approximate solution of the following differential equation with specified initial value. Use 5 steps of size 0.15. yt=4x+2y,y(0)=2y^{t}=4 x+2 y, \quad y(0)=2

(Multiple Choice)
4.9/5
(29)

 Which of the following is a solution of the differential equation 7y+7y=0 ? \text { Which of the following is a solution of the differential equation } 7 y ^ { \prime \prime } + 7 y = 0 \text { ? }

(Multiple Choice)
4.8/5
(34)

Solve the differential equation. dydx=x+8\frac { d y } { d x } = x + 8

(Multiple Choice)
4.8/5
(41)

 At time t=0 minutes, the temperature of an object is 160F. The temperature of the \text { At time } t = 0 \text { minutes, the temperature of an object is } 160 ^ { \circ } \mathrm { F } \text {. The temperature of the } object is changing at the rate given by the differential equation dydt=12(y92)\frac { d y } { d t } = - \frac { 1 } { 2 } ( y - 92 ) . Use Euler's Method to approximate the particular solutions of this differential equation at t=2t = 2 . Use a step size of h=0.1h = 0.1 . Round your answer to one decimal place.

(Multiple Choice)
4.9/5
(38)

 The half-life of the radium isotope Ra-226 is approximately 1,599 years. If the initial \text { The half-life of the radium isotope Ra-226 is approximately } 1,599 \text { years. If the initial } quantity of the isotope is 38 g38 \mathrm {~g} , what is the amount left after 1,000 years? Round your answer to two decimal places.

(Multiple Choice)
5.0/5
(29)

Suppose an eight-pound object is dropped from a height of 5000 feet, where the air resistance is proportional to the velocity. Write the velocity as a function of time if its velocity after 7 Seconds is approximately -75 feet per second. Use a graphing utility or a computer algebra system. Round numerical answers in your answer to four places.

(Multiple Choice)
4.9/5
(35)

Find the particular solution of the differential equation yt+(8x20)y=0 that y ^ { t } + ( 8 x - 20 ) y = 0 \text { that } satisfies the boundary condition y(5)=2y ( 5 ) = 2 .

(Multiple Choice)
4.8/5
(32)

 Find the particular solution of the differential equation x9yt+8y=e1/x8 that \text { Find the particular solution of the differential equation } x ^ { 9 } y ^ { t} + 8 y = e ^ { 1 / x ^ { 8 } } \text { that } satisfies the initial condition y(1)=ey ( 1 ) = e .

(Multiple Choice)
4.7/5
(43)

A 200-gallon tank is full of a solution containing 25 pounds of concentrate. Starting at time t=0t = 0 , distilled water is added to the tank at a rate of 10 gallons per minute, and the well-stirred solution is withdrawn at the same rate. Find the time at which the amount of concentrate in the tank reaches 15 pounds. Round your answer to one decimal place.

(Multiple Choice)
5.0/5
(41)

 Find the function y=f(t) passing through the point (0,12) with the first derivative \text { Find the function } y = f ( t ) \text { passing through the point } ( 0,12 ) \text { with the first derivative } dydt=67y\frac { d y } { d t } = \frac { 6 } { 7 } y

(Multiple Choice)
4.7/5
(30)

Solve the differential equation. yt=2xyy ^ { t } = \frac { - 2 x } { y }

(Multiple Choice)
4.7/5
(35)

Suppose that the population (in millions) of Paraguay in 2007 was 6.7 and that the expected continuous annual rate of change of the population is 0.0240.024 . Find the exponential growth model P=CektP = C e ^ { k t } for the population by letting t=0t = 0 correspond to 2000 . Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(27)

Find an equation of the graph that passes through the point (7, 3) and has the slope yt=5y2xy ^ { t } = \frac { 5 y } { 2 x }

(Multiple Choice)
4.8/5
(46)

Find the logistic equation that satisfies the following differential equation and initial condition. dydt=3.4y(1y53),y(0)=13\frac { d y } { d t } = 3.4 y \left( 1 - \frac { y } { 53 } \right) , y ( 0 ) = 13

(Multiple Choice)
4.9/5
(42)

 Find the particular solution of the differential equation dydx+7x3y=x3 passing \text { Find the particular solution of the differential equation } \frac { d y } { d x } + 7 x ^ { 3 } y = x ^ { 3 } \text { passing } through the point (0,32)\left( 0 , \frac { 3 } { 2 } \right) .

(Multiple Choice)
4.9/5
(45)

 Use u(x,y)=x3y as a integrating factor to find the general solution of the \text { Use } u ( x , y ) = x ^ { 3 } y \text { as a integrating factor to find the general solution of the } differential equation (4y3+7x3y)dx+(4xy2+2x4)dy=0\left( 4 y ^ { 3 } + 7 x ^ { 3 } y \right) d x + \left( 4 x y ^ { 2 } + 2 x ^ { 4 } \right) d y = 0

(Multiple Choice)
4.8/5
(30)

 The logistic function P(t)=241+3e2t models the growth of a population. Identify \text { The logistic function } P ( t ) = \frac { 24 } { 1 + 3 e ^ { - 2 t } } \text { models the growth of a population. Identify } the initial population.

(Multiple Choice)
4.7/5
(50)

Use integration to find a general solution of the differential equation. dydx=5x3+x\frac { d y } { d x } = 5 x ^ { 3 } + x

(Multiple Choice)
4.8/5
(38)
Showing 61 - 80 of 85
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)