Exam 13: Introduction to Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The average length of time that a customer waits in line for service is W(x,y)=1xy,x>yW ( x , y ) = \frac { 1 } { x - y } , x > y where yy is the average arrival rate, written as the number of customers per unit of time, and xx is the average service rate, written in the same units. Evaluate W(18,6).W ( 18,6 ) . Note: xx and yy are given as the number of customers per hour.

(Multiple Choice)
4.9/5
(43)

Find least squares regression line for the points shown in the graph is y=710x+2y = \frac { 7 } { 10 } x + 2 Calculate S, the sum of the squared errors.  Find least squares regression line for the points shown in the graph is  y = \frac { 7 } { 10 } x + 2  Calculate S, the sum of the squared errors.

(Multiple Choice)
4.8/5
(46)

Describe the level curves of the function. Sketch the level curves for the given c-values. z=62x3y,c=0,2,4,6z = 6 - 2 x - 3 y , \quad c = 0,2,4,6

(Multiple Choice)
5.0/5
(33)

Find and simplify f(x+Δx,y)f(x,y)Δx for the given function f(x,y)=7x+2y2.\frac { f ( x + \Delta x , y ) - f ( x , y ) } { \Delta x } \text { for the given function } f ( x , y ) = 7 x + 2 y ^ { 2 } .

(Multiple Choice)
4.7/5
(34)

Find the first partial derivative for the function f(x,y,z)=5x2y3xyz+6yz2 with f ( x , y , z ) = 5 x ^ { 2 } y - 3 x y z + 6 y z ^ { 2 } \text { with } respect to z.

(Multiple Choice)
5.0/5
(36)

Find the directional derivative of the function g(x,y,z)=xyez at P(3,8,0) in the g ( x , y , z ) = x y e ^ { z } \text { at } P ( 3,8,0 ) \text { in the } direction of Q(0,0,0)Q ( 0,0,0 ) . Round your answer to two decimal places.

(Multiple Choice)
4.9/5
(41)

Suppose the temperature at any point (x,y) in a steel plate is ( x , y ) \text { in a steel plate is } T=5000.6x21.5y2T = 500 - 0.6 x ^ { 2 } - 1.5 y ^ { 2 } where xx and yy are measured in meters. At the point (8,7)( 8,7 ) find the rate of change of the temperature with respect to the distance moved along the plate in the direction of the xx -axis. Round your answer to one decimal place.

(Multiple Choice)
4.9/5
(37)

Find the partial derivative fy for the function f(x,y)=x22y2+7f _ { y } \text { for the function } f ( x , y ) = x ^ { 2 } - 2 y ^ { 2 } + 7

(Multiple Choice)
4.9/5
(46)

Suppose electrical power P is given by P=E2R, where E is voltage and R is P = \frac { E ^ { 2 } } { R } \text {, where } E \text { is voltage and } R \text { is } resistance. Approximate the maximum percent error in calculating the power if 140 volts are applied to a 3000-ohm resistor and the possible percent errors in measuring E and R are 5% and 8%, Respectively.

(Multiple Choice)
4.9/5
(37)

Find the limit. lim(x,y)(0,0)(x+5y+5)\lim _ { ( x , y ) \rightarrow ( 0,0 ) } ( x + 5 y + 5 )

(Multiple Choice)
4.9/5
(27)

Find the directional derivative of the function at P in the direction of v\overrightarrow { \mathbf { v } } \text {. } f(x,y,z)=xy+yz+xz,P(1,1,1),v=4i^+5j^3k^f ( x , y , z ) = x y + y z + x z , P ( 1,1,1 ) , \quad \overrightarrow { \mathbf { v } } = 4 \hat { \mathbf { i } } + 5 \hat { \mathbf { j } } - 3 \hat { \mathbf { k } }

(Multiple Choice)
4.8/5
(32)

The radius r and height h of a right circular cylinder are measured with possible errors of 5% and 1%, respectively. Approximate the maximum possible percent error in measuring The volume.

(Multiple Choice)
4.8/5
(35)

Determine whether there is a relative maximum, a relative minimum, a saddle point, or insufficient information to determine the nature of the function f(x,y) at the critical point f ( x , y ) \text { at the critical point } (x0,y0), if fxx(x0,y0)=16,fyy(x0,y0)=2,fxy(x0,y0)=1\left( x _ { 0 } , y _ { 0 } \right) \text {, if } f _ { x x } \left( x _ { 0 } , y _ { 0 } \right) = 16 , f _ { y y } \left( x _ { 0 } , y _ { 0 } \right) = - 2 , f _ { x y } \left( x _ { 0 } , y _ { 0 } \right) = - 1

(Multiple Choice)
4.9/5
(26)

Find and simplify the function h(x,y,z)=xyz at the given value (4,4,27)h ( x , y , z ) = \frac { x y } { z } \text { at the given value } ( 4,4,27 )

(Multiple Choice)
4.9/5
(37)

Suppose a corporation manufactures candles at two locations. The cost of producing x1 units at location 1 is C1=0.06x12+4x1+500 and the cost of producing x2 units at location 2 is x _ { 1 } \text { units at location } 1 \text { is } C _ { 1 } = 0.06 x _ { 1 } ^ { 2 } + 4 x _ { 1 } + 500 \text { and the cost of producing } x _ { 2 } \text { units at location } 2 \text { is } C2=0.05x22+4x2+400C _ { 2 } = 0.05 x _ { 2 } ^ { 2 } + 4 x _ { 2 } + 400 . The candles sell for $43\$ 43 per unit. Find the quantity that should be produced at each location to maximize the profit P=43(x1+x2)C1C2P = 43 \left( x _ { 1 } + x _ { 2 } \right) - C _ { 1 } - C _ { 2 } .

(Multiple Choice)
4.7/5
(31)

Find three positive numbers x, y, and z whose sum is 24 and product is a maximum.

(Multiple Choice)
4.8/5
(40)

Determine the continuity of the function f(x,y)=11sinxyf ( x , y ) = 11 \sin \frac { x } { y }

(Multiple Choice)
4.9/5
(33)

Find the partial derivative fx for the function f(x,y)=x28y2+6f _ { x } \text { for the function } f ( x , y ) = x ^ { 2 } - 8 y ^ { 2 } + 6 \text {. }

(Multiple Choice)
5.0/5
(41)

Find the path of a heat-seeking particle placed at point P(16,16) on a metal plate P ( 16,16 ) \text { on a metal plate } with a temperature field T(x,y)=4016x23y2T ( x , y ) = 401 - 6 x ^ { 2 } - 3 y ^ { 2 } .

(Multiple Choice)
4.8/5
(37)

Find the directional derivative of the function at P in the direction of v\overrightarrow { \mathbf { v } } f(x,y)=3x2xy+7y,P(1,9),v=12(i^+3j^)f ( x , y ) = 3 x - 2 x y + 7 y , P ( 1,9 ) , \quad \overrightarrow { \mathbf { v } } = \frac { 1 } { 2 } ( \hat { \mathbf { i } } + \sqrt { 3 } \hat { \mathbf { j } } )

(Multiple Choice)
4.8/5
(30)
Showing 81 - 100 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)