Exam 13: Introduction to Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Sketch the level curves of the function z=82x5y for the given c-values z = 8 - 2 x - 5 y \text { for the given } c \text {-values } c=0,2,4,6c = 0,2,4,6

(Multiple Choice)
4.8/5
(42)

 The temperature at the point (x,y) on a metal plate is modeled by \text { The temperature at the point } ( x , y ) \text { on a metal plate is modeled by } T(x,y)=200e(x2+y)/2,x0,y0T ( x , y ) = 200 e ^ { - \left( x ^ { 2 } + y \right) / 2 } , x \geq 0 , y \geq 0 . Find the direction of greatest increase in heat from the point (4,15)( 4,15 ) .

(Multiple Choice)
4.8/5
(44)

Suppose a home improvement contractor is painting the walls and ceiling of a rectangular room. The volume of the room is 360 cubic feet. The cost of wall paint is $0.054 per Square foot and the cost of ceiling paint is $0.18 per square foot. Let x, y, and z be the length, width, And height of a rectangular room respectively. Identify the room dimensions that result in a minimum Cost for the paint and use these dimensions to find the minimum cost for the paint. Round your Answer to the nearest cent.

(Multiple Choice)
4.9/5
(31)

Suppose a home improvement contractor is painting the walls and ceiling of a rectangular room. The volume of the room is 640 cubic feet. The cost of wall paint is $0.076 per Square foot and the cost of ceiling paint is $0.19 per square foot. Let x, y, and z be the length, width, And height of a rectangular room respectively. Find the room dimensions that result in a minimum Cost for the paint. Round your answers to two decimal places.

(Multiple Choice)
4.8/5
(29)

Find three positive numbers x, y, and z whose sum is 48 and P=xy2z is a maximum. P = x y ^ { 2 } z \text { is a maximum. }

(Multiple Choice)
4.9/5
(36)

The two radii of the frustum of a right circular cone are increasing at a rate of 7 centimeters per minute, and the height is increasing at a rate of 11 centimeters per minute (see figure). Find the rate at which the surface area is changing when the two radii are 16 centimeters and 26 Centimeters, and the height is 13 centimeters. [Note: The surface area does not include the top andBottom circles.] Round your answer to two decimal places. The two radii of the frustum of a right circular cone are increasing at a rate of 7 centimeters per minute, and the height is increasing at a rate of 11 centimeters per minute (see figure). Find the rate at which the surface area is changing when the two radii are 16 centimeters and 26 Centimeters, and the height is 13 centimeters. [Note: The surface area does not include the top andBottom circles.] Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(29)

The temperature at the point (x,y) on a metal plate is T=9xx2+y2. Find the ( x , y ) \text { on a metal plate is } T = \frac { 9 x } { x ^ { 2 } + y ^ { 2 } } \text {. Find the } direction of greatest increase in heat from the point (7,9)( 7,9 ) . Round all numerical values in your answer to three decimal places.

(Multiple Choice)
4.8/5
(29)

Find and simplify the function f(x,y)=xy9tdt at the given value (10,5)f ( x , y ) = \int _ { x } ^ { y } \frac { 9 } { t } d t \text { at the given value } ( 10,5 )

(Multiple Choice)
4.7/5
(37)

 Find the limit limΔx0f(x+Δx,y)f(x,y)Δx for the function f(x,y)=4x25y\text { Find the limit } \lim _ { \Delta x \rightarrow 0 } \frac { f ( x + \Delta x , y ) - f ( x , y ) } { \Delta x } \text { for the function } f ( x , y ) = 4 x ^ { 2 } - 5 y

(Multiple Choice)
4.9/5
(38)

 Given f(x,y)=16x2y2, calculate Δz by evaluating f(6,5) and f(6.4,5.29)\text { Given } f ( x , y ) = 16 - x ^ { 2 } - y ^ { 2 } \text {, calculate } \Delta z \text { by evaluating } f ( 6,5 ) \text { and } f ( 6.4,5.29 ) \text {. } Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(34)

 Find f(x,y) for function f(x,y)=8x8y2\text { Find } \nabla f ( x , y ) \text { for function } f ( x , y ) = 8 - \frac { x } { 8 } - \frac { y } { 2 } \text {. }

(Multiple Choice)
4.9/5
(42)

Use the gradient to find the directional derivative of the function at P in the direction of Q. f(x,y)=sin(7x)cosy,P(0,0),Q(π7,π)f ( x , y ) = \sin ( 7 x ) \cos y , P ( 0,0 ) , Q \left( \frac { \pi } { 7 } , \pi \right)

(Multiple Choice)
4.8/5
(26)

A company manufactures two types of sneakers: running shoes and basketball shoes. The total revenue from units of running shoes and units of basketball shoes is: R=6x129x222x1x2+37x1+95x2R = - 6 x _ { 1 } ^ { 2 } - 9 x _ { 2 } ^ { 2 } - 2 x _ { 1 } x _ { 2 } + 37 x _ { 1 } + 95 x _ { 2 } where x1x _ { 1 } and x2x _ { 2 } are in thousands of units. Find x1x _ { 1 } and x2x _ { 2 } so as to maximize the revenue.

(Multiple Choice)
4.8/5
(34)

 Find ws using the appropriate Chain Rule for w=x2+y2+z2 where \text { Find } \frac { \partial w } { \partial s } \text { using the appropriate Chain Rule for } w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \text { where } x=8tsins,y=8tcossx = 8 t \sin s , y = 8 t \cos s , and z=8st2z = 8 s t ^ { 2 }

(Multiple Choice)
4.8/5
(38)

 Find the partial derivative zy for the function z=16y2x\text { Find the partial derivative } \frac { \partial z } { \partial y } \text { for the function } z = 16 y ^ { 2 } \sqrt { x }

(Multiple Choice)
4.8/5
(35)

 For f(x,y)=sin(7xy), evaluate fx at the point (2,π4)\text { For } f ( x , y ) = \sin ( 7 x y ) \text {, evaluate } f _ { x } \text { at the point } \left( 2 , \frac { \pi } { 4 } \right)

(Multiple Choice)
4.8/5
(36)

Find the partial derivative fy for the function f(x,y)=8x+y9f _ { y } \text { for the function } f ( x , y ) = \sqrt { 8 x + y ^ { 9 } } \text {. }

(Multiple Choice)
4.9/5
(27)

Find the partial derivative fx for the function f(x,y)=28x+y3f _ { x } \text { for the function } f ( x , y ) = \sqrt { 28 x + y ^ { 3 } } \text {. }

(Multiple Choice)
4.8/5
(32)

The radius of a right circular cylinder is increasing at a rate of 9 inches per minute, and the height is decreasing at a rate of 7 inches per minute. What is the rate of change of the surface Area when the radius is 12 inches and the height is 32 inches?

(Multiple Choice)
4.8/5
(31)

 Differentiate implicitly to find dydx\text { Differentiate implicitly to find } \frac { d y } { d x } \text {. } x24xy+y210x+y9=0x ^ { 2 } - 4 x y + y ^ { 2 } - 10 x + y - 9 = 0

(Multiple Choice)
4.8/5
(38)
Showing 61 - 80 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)