Exam 15: Circuits Analysis in the S-Domain

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Plot the magnitude and phase Bode diagrams of the transfer function given by H(s)=(s+104)2100(s+103)2H ( s ) = \frac { \left( s + 10 ^ { 4 } \right) ^ { 2 } } { 100 \left( s + 10 ^ { 3 } \right) ^ { 2 } }

(Essay)
4.8/5
(26)

In the circuit shown below, let R1=2Ω,R2=3Ω,C=1 F, L=0.2H,v(0)=1 V,i(0)=2 A,is(t)=3u(t)\mathrm { R } _ { 1 } = 2 \Omega , \mathrm { R } _ { 2 } = 3 \Omega , \mathrm { C } = 1 \mathrm {~F} , \mathrm {~L} = 0.2 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 1 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 2 \mathrm {~A} , \mathrm { i } _ { \mathrm { s } } ( \mathrm { t } ) = 3 \mathrm { u } ( \mathrm { t } ) Draw the circuit in the s-domain and find the Norton equivalent current In(s)\mathrm { I } _ { \mathrm { n } } ( \mathrm { s } ) and the Norton equivalent impedance Zn(s)Z _ { n } ( s ) .  In the circuit shown below, let  \mathrm { R } _ { 1 } = 2 \Omega , \mathrm { R } _ { 2 } = 3 \Omega , \mathrm { C } = 1 \mathrm {~F} , \mathrm {~L} = 0.2 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 1 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 2 \mathrm {~A} , \mathrm { i } _ { \mathrm { s } } ( \mathrm { t } ) = 3 \mathrm { u } ( \mathrm { t } )  Draw the circuit in the s-domain and find the Norton equivalent current  \mathrm { I } _ { \mathrm { n } } ( \mathrm { s } )  and the Norton equivalent impedance  Z _ { n } ( s ) .

(Essay)
4.8/5
(31)

Plot the magnitude and phase Bode diagrams of the transfer function given by H(s)=102(s+100)s(s+10000)H ( s ) = \frac { 10 ^ { 2 } ( s + 100 ) } { s ( s + 10000 ) }

(Essay)
4.8/5
(43)

In the circuit shown below, let R=3Ω,C=0.1 F, L=2H,v(0)=2 V,i(0)=1 A,vs(t)=3u(t)\mathrm { R } = 3 \Omega , \mathrm { C } = 0.1 \mathrm {~F} , \mathrm {~L} = 2 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 2 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 1 \mathrm {~A} , \mathrm { v } _ { \mathrm { s } } ( \mathrm { t } ) = 3 \mathrm { u } ( \mathrm { t } ) Draw the circuit in the s-domain and find the Thévenin equivalent voltage Vth(s)\mathrm { V } _ { \mathrm { th } } ( \mathrm { s } ) and the Thévenin equivalent impedance Zth(s)Z _ { t h } ( s ) .  In the circuit shown below, let  \mathrm { R } = 3 \Omega , \mathrm { C } = 0.1 \mathrm {~F} , \mathrm {~L} = 2 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 2 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 1 \mathrm {~A} , \mathrm { v } _ { \mathrm { s } } ( \mathrm { t } ) = 3 \mathrm { u } ( \mathrm { t } )  Draw the circuit in the s-domain and find the Thévenin equivalent voltage  \mathrm { V } _ { \mathrm { th } } ( \mathrm { s } )  and the Thévenin equivalent impedance  Z _ { t h } ( s ) .

(Essay)
4.9/5
(35)

In the circuit shown below, let R1=1Ω,R2=2Ω,C=0.2 F, L=0.5H,v(0)=1 V,i(0)=2 A,vs(t)=3u(t)\mathrm { R } _ { 1 } = 1 \Omega , \mathrm { R } _ { 2 } = 2 \Omega , \mathrm { C } = 0.2 \mathrm {~F} , \mathrm {~L} = 0.5 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 1 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 2 \mathrm {~A} , \mathrm { vs } ( \mathrm { t } ) = 3 \mathrm { u } ( \mathrm { t } )  Draw the circuit in the s-domain and find V0(s) and v0(t) for t0\text { Draw the circuit in the s-domain and find } V _ { 0 } ( s ) \text { and } v _ { 0 } ( t ) \text { for } t \geq 0 \text {. }  In the circuit shown below, let  \mathrm { R } _ { 1 } = 1 \Omega , \mathrm { R } _ { 2 } = 2 \Omega , \mathrm { C } = 0.2 \mathrm {~F} , \mathrm {~L} = 0.5 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 1 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 2 \mathrm {~A} , \mathrm { vs } ( \mathrm { t } ) = 3 \mathrm { u } ( \mathrm { t } )   \text { Draw the circuit in the s-domain and find } V _ { 0 } ( s ) \text { and } v _ { 0 } ( t ) \text { for } t \geq 0 \text {. }

(Essay)
4.9/5
(39)

In the circuit shown below, let R1=2Ω,R2=1Ω,C=0.2 F, L=2H,v(0)=1 V,i(0)=2 A,is(t)=5u(t)\mathrm { R } _ { 1 } = 2 \Omega , \mathrm { R } _ { 2 } = 1 \Omega , \mathrm { C } = 0.2 \mathrm {~F} , \mathrm {~L} = 2 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 1 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 2 \mathrm {~A} , \mathrm { i } _ { \mathrm { s } } ( \mathrm { t } ) = 5 \mathrm { u } ( \mathrm { t } ) Draw the circuit in the s-domain and find V(s)V ( s ) and v(t)v ( t ) for t0t \geq 0 .  In the circuit shown below, let  \mathrm { R } _ { 1 } = 2 \Omega , \mathrm { R } _ { 2 } = 1 \Omega , \mathrm { C } = 0.2 \mathrm {~F} , \mathrm {~L} = 2 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 1 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 2 \mathrm {~A} , \mathrm { i } _ { \mathrm { s } } ( \mathrm { t } ) = 5 \mathrm { u } ( \mathrm { t } )  Draw the circuit in the s-domain and find  V ( s )  and  v ( t )  for  t \geq 0 .

(Essay)
4.9/5
(31)
Showing 21 - 26 of 26
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)