Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The line integral \int C (yx2)ds\left( y - x ^ { 2 } \right) d s , where C is the curve x=t,y=2t,0t1x = t , y = 2 t , 0 \leq t \leq 1 \text {, } is

(Multiple Choice)
4.7/5
(31)

The rectangular equation for the parametric surface and x(u,v)=2ucosvx ( u , v ) = 2 u \cos v is

(Multiple Choice)
4.9/5
(37)

If I = \int C (sin2xtany)dx+xsec2ydy( \sin 2 x - \tan y ) d x + x \sec ^ { 2 } y d y is independent of the path where C is a curve from (0,π4)\left( 0 , \frac { \pi } { 4 } \right) to (π4,π4)\left( \frac { \pi } { 4 } , - \frac { \pi } { 4 } \right) then I is

(Multiple Choice)
4.8/5
(30)

Let F(x,y,z)=3yi+3xj+2k\mathbf { F } ( x , y , z ) = - 3 y \mathbf { i } + 3 x \mathbf { j } + 2 \mathbf { k } and C be the boundary of z = 1 inside x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 . Using Stokes' Theorem, CFTds\int _ { C } \mathbf { F } \cdot \mathbf { T } d s is

(Multiple Choice)
4.8/5
(31)

The line integral \int C (xyz)dx+exdy+ydz( x y - z ) d x + e ^ { x } d y + y d z , where C is the line segment from (1,0,0) to (3,4,8), is

(Multiple Choice)
4.7/5
(36)

If I = \int C (x+y)dx+(2y+x)dy( x + y ) d x + ( 2 y + x ) d y is independent of the path where C is a curve from (0, 2) to (1, 3), then I is

(Multiple Choice)
4.8/5
(37)

The surface integral \int \int S xyzdSx y z d S \text {, } where S is z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } between z=1z = 1 and z=2z = 2 is

(Multiple Choice)
4.8/5
(31)

Let F(x,y,z)=x2yi+y2j+xzk\mathbf { F } ( x , y , z ) = x ^ { 2 } y \mathbf { i } + y ^ { 2 } \mathbf { j } + x z \mathbf { k } and S is in the first octant bounded by and the coordinate planes. Using the Divergence Theorem, S\iint S x=1,x = 1 , is

(Multiple Choice)
4.8/5
(25)

The surface integral \int \int S xyzdS,x y z d S , where S is x2+z2=4x ^ { 2 } + z ^ { 2 } = 4 between y=1y = 1 and y=3y = 3 \text {, } is

(Multiple Choice)
4.9/5
(36)

The rectangular equation for the parametric surfaceand x(u,v)=3cosux ( u , v ) = 3 \cos u is

(Multiple Choice)
4.8/5
(34)

Using Green's Theorem, the line integral \int C y2dx+x2dyy ^ { 2 } d x + x ^ { 2 } d y where C is the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1), is

(Multiple Choice)
4.8/5
(38)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (4, 0) to (0, 4) is

(Multiple Choice)
4.7/5
(27)

Let F(x,y,z)=xz2i+y2j+x2zk\mathbf { F } ( x , y , z ) = x z ^ { 2 } \mathbf { i } + y ^ { 2 } \mathbf { j } + x ^ { 2 } z \mathbf { k } . Then curl F is

(Multiple Choice)
4.9/5
(39)

If I = \int C (2ye2xx2)dx+e2xdy\left( 2 y e ^ { 2 x } - x ^ { 2 } \right) d x + e ^ { 2 x } d y is independent of the path where C is a curve from (0, 1) to (1, 2), then I is

(Multiple Choice)
4.8/5
(29)

The work done by the force F(x,y)=(2x+y)i+(x2y)j\mathbf { F } ( x , y ) = ( 2 x + y ) \mathbf { i } + ( x - 2 y ) \mathbf { j } moving along r(t)=3costi+3sintj\mathbf { r } ( t ) = 3 \cos t \mathbf { i } + 3 \sin t \mathbf { j } with 0t2π0 \leq t \leq 2 \pi is

(Multiple Choice)
4.9/5
(33)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (2, 0) to (2, 2) and then the line segment from (2, 2) to (0, 2) is

(Multiple Choice)
4.8/5
(38)

A parameterization of x+y+z=6x + y + z = 6 is

(Multiple Choice)
4.8/5
(32)

The work done by the force F(x,y)=2xyi+(x2+y2)j\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + \left( x ^ { 2 } + y ^ { 2 } \right) \mathbf { j } moving along y2=xy ^ { 2 } = x from (0, 0) to (1, 1) is

(Multiple Choice)
4.8/5
(31)

Let F(x,y,z)=x2i+y2j+z2k\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } + y ^ { 2 } \mathbf { j } + z ^ { 2 } \mathbf { k } and S is the boundary of the region enclosed on the side by x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 , below by z=0z = 0 and above z=4z = 4 Using the Divergence Theorem, S\iint S FndS\mathbf { F } \bullet \mathbf { n } d S is

(Multiple Choice)
4.9/5
(33)

Let F(x,y,z)=x2z2i2yj+3xyzk\mathbf { F } ( x , y , z ) = x ^ { 2 } z ^ { 2 } \mathbf { i } - 2 y \mathbf { j } + 3 x y z \mathbf { k } and S is the region bounded by and x=0,x=3x = 0 , x = 3 \text {, } . Using the Divergence Theorem, S\iint Sy=0,y=3y = 0 , y = 3 is

(Multiple Choice)
4.8/5
(41)
Showing 21 - 40 of 180
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)