Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The line integral \int C ydsy d s where C is the curve x=3t2,y=t,0t1x = 3 t ^ { 2 } , y = t , 0 \leq t \leq 1 is

(Multiple Choice)
4.8/5
(34)

Using Green's Theorem, the line integral \int C x2ydxy2xdyx ^ { 2 } y d x - y ^ { 2 } x d y where C is the circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 \text {, } is

(Multiple Choice)
4.8/5
(40)

If I = \int C (lnx+2)dx+(ey+2x)dy( \ln x + 2 ) d x + \left( e ^ { y } + 2 x \right) d y is independent of the path where C is a curve from (3, 1) to (1, 3), then I is

(Multiple Choice)
4.8/5
(32)

Let F(x,y,z)=xi+yj+zk\mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and S is x2+y2+z2=36x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36 in the first octant. Then the flux of  F \text { F } through S is

(Multiple Choice)
4.7/5
(34)

Using Green's Theorem, the line integral \int C (x+y)dx+xydy( x + y ) d x + x y d y where C is the closed curve consisting of the arc of 4y=x34 y = x ^ { 3 } from (0, 0) to (2, 2), the line segment from (2, 2) to (2, 0), and the line segment from (2, 0) to (0, 0), is

(Multiple Choice)
4.8/5
(37)

If I = \int C (yx1)dx+(ln(2x2)+1y)dy\left( \frac { y } { x - 1 } \right) d x + \left( \ln ( 2 x - 2 ) + \frac { 1 } { y } \right) d y is independent of the path where C is a curve from (3, 1) to (2, 2), then I is

(Multiple Choice)
4.9/5
(38)

Let f(x,y,z)=(x2+y2+z2)12f ( x , y , z ) = \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { - \frac { 1 } { 2 } } .Its gradient vector field is

(Multiple Choice)
4.8/5
(35)

Let F(x,y,z)=xi+yj2zk\mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } - 2 z \mathbf { k } and S is z=1x2y2z = \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } Then the flux of  F \text { F } through S is

(Multiple Choice)
4.8/5
(30)

The domain of the vector field F(x,y)=sin(x+y)i5x22xy+y2j\mathbf { F } ( x , y ) = \sin ( x + y ) \mathbf { i } - \frac { 5 } { x ^ { 2 } - 2 x y + y ^ { 2 } } \mathbf { j } is

(Multiple Choice)
4.9/5
(29)

Let F(x,y,z)=xi+yj+yk\mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + y \mathbf { k } and S is 2x+3y+z=62 x + 3 y + z = 6 in the first octant. Then the flux of  F \text { F } through S is

(Multiple Choice)
4.8/5
(34)

Let F(x,y,z)=xyi+zj+(x+y)k\mathbf { F } ( x , y , z ) = x y \mathbf { i } + z \mathbf { j } + ( x + y ) \mathbf { k } and S is the region bounded by x=4z,y=4x = 4 - z , y = 4 and the coordinate planes. Using the Divergence Theorem, S\iint S FndS\mathbf { F } \cdot \mathbf { n } d S is

(Multiple Choice)
4.8/5
(35)

If F(x,y)=(6x2y214xy+3)i+(4x3y7x28)j\mathbf { F } ( x , y ) = \left( 6 x ^ { 2 } y ^ { 2 } - 14 x y + 3 \right) \mathbf { i } + \left( 4 x ^ { 3 } y - 7 x ^ { 2 } - 8 \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

(Multiple Choice)
4.8/5
(33)

The surface integral \int \int S z2dSz ^ { 2 } d S where S is z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } between z=1z = 1 and z=2z = 2 is

(Multiple Choice)
4.9/5
(27)

Let F(x,y,z)=3zk\mathbf { F } ( x , y , z ) = 3 z \mathbf { k } and S is x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 . Using the Divergence Theorem, S\iint S FndS\mathbf { F } \bullet \mathbf { n } d S is

(Multiple Choice)
4.8/5
(37)

The line integral \int C (x2+xy)dx+(y2xy)dy\left( x ^ { 2 } + x y \right) d x + \left( y ^ { 2 } - x y \right) d y , where C is the line y=xy = x from (0,0) to (2,2), is

(Multiple Choice)
4.8/5
(35)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=4costi+4sintj\mathbf { r } ( t ) = 4 \cos t \mathbf { i } + 4 \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

(Multiple Choice)
4.9/5
(39)

The work done by the force F(x,y)=(yx)i+x2yj\mathbf { F } ( x , y ) = ( y - x ) \mathbf { i } + x ^ { 2 } y \mathbf { j } moving along y=3x2y = 3 x - 2 from (1, 1) to (2, 4) is

(Multiple Choice)
4.8/5
(41)

The line integral \int C 4xydx+(2x23xy)dy4 x y d x + \left( 2 x ^ { 2 } - 3 x y \right) d y , where C is the line y=xy = x from (0,0) to (2,2), is

(Multiple Choice)
4.8/5
(41)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (3, 0) to (0, 3) is

(Multiple Choice)
4.8/5
(32)

If F(x,y)=(4y2+6xy2)i+(3x2+8xy+1)j\mathbf { F } ( x , y ) = \left( 4 y ^ { 2 } + 6 x y - 2 \right) \mathbf { i } + \left( 3 x ^ { 2 } + 8 x y + 1 \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

(Multiple Choice)
4.9/5
(29)
Showing 161 - 180 of 180
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)