Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Applying Green's Theorem, the area of the region bounded by x=cos3tx = \cos ^ { 3 } t and y=sin3ty = \sin ^ { 3 } t with 0t2π0 \leq t \leq 2 \pi is

(Multiple Choice)
4.8/5
(36)

The surface integral \int \int S xdSx d S where S is x+y+z=1x + y + z = 1 in the first octant, is

(Multiple Choice)
5.0/5
(32)

The line integral \int C (x2+xy)dx+(y2xy)dy\left( x ^ { 2 } + x y \right) d x + \left( y ^ { 2 } - x y \right) d y , where C is the curve 2y=x22 y = x ^ { 2 } from (0,0) to (2,2), is

(Multiple Choice)
4.7/5
(39)

The area of the surface r(u,v)=cosui+sinuj+vk\mathbf { r } ( u , v ) = \cos u \mathbf { i } + \sin u \mathbf { j } + v \mathbf { k } , where 0u2π0 \leq u \leq 2 \pi 0v30 \leq v \leq 3 is

(Multiple Choice)
4.9/5
(35)

Let F(x,y)=ysinxicosxj\mathbf { F } ( x , y ) = y \sin x \mathbf { i } - \cos x \mathbf { j } where C is the line segment from (π2,0)\left( \frac { \pi } { 2 } , 0 \right) to (π,1)( \pi , 1 ) . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

(Multiple Choice)
4.9/5
(21)

Let F(x,y,z)=2xi2xj+z2k\mathbf { F } ( x , y , z ) = 2 x \mathbf { i } - 2 x \mathbf { j } + z ^ { 2 } \mathbf { k } and S is the region bounded by and x=0,x=3x = 0 , x = 3 . Using the Divergence Theorem, S\iint S y=0,y=3y = 0 , y = 3 is

(Multiple Choice)
4.7/5
(34)

A parameterization of z=5x2z = 5 x ^ { 2 } is

(Multiple Choice)
4.8/5
(33)

Applying Green's Theorem, the area of the region bounded by x=tsintx = t - \sin t and y=1costy = 1 - \cos t with 0t2π0 \leq t \leq 2 \pi is

(Multiple Choice)
4.8/5
(32)

Let F(x,y,z)=(y2+z2)i+xeycoszjxeycoszk\mathbf { F } ( x , y , z ) = \left( y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + x e ^ { y } \cos z \mathbf { j } - x e ^ { y } \cos z \mathbf { k } . Then curl F is

(Multiple Choice)
4.9/5
(39)

Let f(x,y,z)=ln(xyz)f ( x , y , z ) = \ln ( x y z ) . Its gradient vector field is

(Multiple Choice)
4.7/5
(29)

The domain of the vector field F(x,y)=xyi+5xyj\mathbf { F } ( x , y ) = \sqrt { x y } \mathbf { i } + \frac { 5 } { x y } \mathbf { j } is

(Multiple Choice)
4.9/5
(28)

Let F(x,y,z)=4xzi+yj+4xyk\mathbf { F } ( x , y , z ) = 4 x z \mathbf { i } + y \mathbf { j } + 4 x y \mathbf { k } and C be the boundary of the surface 9x2y2=z9 - x ^ { 2 } - y ^ { 2 } = z above z = 0. Using Stokes' Theorem, CFTds\int _ { C } \mathbf { F } \cdot \mathbf { T } d s is

(Multiple Choice)
4.8/5
(27)

Using Green's Theorem, the line integral \int C ex+ydx+ex+ydye ^ { x + y } d x + e ^ { x + y } d y where C is x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 is

(Multiple Choice)
4.8/5
(32)

Let f(x,y)=ln(yx)+eyxf ( x , y ) = \ln \left( \frac { y } { x } \right) + e ^ { \frac { y } { x } } . Its gradient vector field is

(Multiple Choice)
4.7/5
(43)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (1, 0) to (0, 1) is

(Multiple Choice)
4.9/5
(45)

Let F(x,y,z)=x2i+y2j+z2k\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } + y ^ { 2 } \mathbf { j } + z ^ { 2 } \mathbf { k } . Then curl F is

(Multiple Choice)
4.7/5
(29)

Let F(x,y,z)=xi+yj+2zk\mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + 2 z \mathbf { k } and S is x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 between z=0z = 0 and z=3z = 3 Then the flux of  F \text { F } through S is

(Multiple Choice)
4.9/5
(32)

Let f(x,y)=2x3+xy2+xz2f ( x , y ) = 2 x ^ { 3 } + x y ^ { 2 } + x z ^ { 2 } . Its gradient vector field is

(Multiple Choice)
4.8/5
(30)

Using Green's Theorem, the line integral \int C (sin4x+e2x)dx+(cos3yey)dy\left( \sin ^ { 4 } x + e ^ { 2 x } \right) d x + \left( \cos ^ { 3 } y - e ^ { y } \right) d y where C is x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 is

(Multiple Choice)
4.8/5
(43)

Using Green's Theorem, the line integral \int C (x2+x)dy\left( - x ^ { 2 } + x \right) d y where C is the line segment from (0, 0) to (2, 1), and x=2y2x = 2 y ^ { 2 } from (2, 1) to (0, 0), is

(Multiple Choice)
4.9/5
(34)
Showing 101 - 120 of 180
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)