Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

If F(x,y)=ey2cosxi+2yey2sinxj\mathbf { F } ( x , y ) = e ^ { y ^ { 2 } } \cos x \mathbf { i } + 2 y e ^ { y ^ { 2 } } \sin x \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

(Multiple Choice)
4.8/5
(37)

Let F(x,y)=9x2yi+(5x2y)j\mathbf { F } ( x , y ) = 9 x ^ { 2 } y \mathbf { i } + \left( 5 x ^ { 2 } - y \right) \mathbf { j } , where C is the y=x3+1y = x ^ { 3 } + 1 from (1,2) to (3,28). Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

(Multiple Choice)
4.7/5
(33)

The domain of the vector field F(x,y)=1xi+lnyj\mathbf { F } ( x , y ) = \sqrt { 1 - x } \mathbf { i } + \ln y \mathbf { j } is

(Multiple Choice)
4.8/5
(34)

A parameterization of y=6x2y = 6 x ^ { 2 } is

(Multiple Choice)
4.9/5
(45)

The domain of the vector field F(x,y,z)=yzeyzi+xzexzj+xyezyk\mathbf { F } ( x , y , z ) = \frac { y z } { e ^ { y z } } \mathbf { i } + \frac { x z } { e ^ { x z } } \mathbf { j } + \frac { x y } { e ^ { z y } } \mathbf { k } is

(Multiple Choice)
4.9/5
(38)

The work done by the force F(x,y)=(x+y)i(yx)j\mathbf { F } ( x , y ) = - ( x + y ) \mathbf { i } - ( y - x ) \mathbf { j } moving along r(t)=t3i+t2j\mathbf { r } ( t ) = t ^ { 3 } \mathbf { i } + t ^ { 2 } \mathbf { j } from (8, 4) to (1, 1) is

(Multiple Choice)
4.8/5
(27)

Let F(x,y,z)=4yi+2zj+3xk\mathbf { F } ( x , y , z ) = - 4 y \mathbf { i } + 2 z \mathbf { j } + 3 x \mathbf { k } , C be the boundary of the region z=10x2y2z = 10 - x ^ { 2 } - y ^ { 2 } above z = 1. Using Stokes' Theorem, CFTds\int _ { C } \mathbf { F } \bullet \mathbf { T } d s is

(Multiple Choice)
4.8/5
(36)

The rectangular equation for the parametric surface and x(u,v)=2cosvcosux ( u , v ) = 2 \cos v \cos u is

(Multiple Choice)
4.8/5
(36)

Let F(x,y,z)=(2xy)i(2xz)j+zk\mathbf { F } ( x , y , z ) = ( 2 x - y ) \mathbf { i } - ( 2 x - z ) \mathbf { j } + z \mathbf { k } and S is the region bounded by 2x+4y+2z=122 x + 4 y + 2 z = 12 and the coordinate planes. Using the Divergence Theorem, S\iint SFndS\mathbf { F } \cdot \mathbf { n } d S is

(Multiple Choice)
4.9/5
(35)

The domain of the vector field F(x,y)=1xi+1yj\mathbf { F } ( x , y ) = \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } is

(Multiple Choice)
4.8/5
(40)

If F(x,y)=2xsec2yi+2x2sec2ytan2yj\mathbf { F } ( x , y ) = 2 x \sec 2 y \mathbf { i } + 2 x ^ { 2 } \sec 2 y \tan 2 y \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

(Multiple Choice)
4.8/5
(32)

An equation of the tangent plane to the surfaceat (1, -1, 1) is

(Multiple Choice)
4.8/5
(37)

Let F(x,y,z)=yi+xj+zk\mathbf { F } ( x , y , z ) = - y \mathbf { i } + x \mathbf { j } + z \mathbf { k } and C be the boundary of x2+y24x ^ { 2 } + y ^ { 2 } \leq 4 on the xy-plane. Using Stokes' Theorem, CFTds\int _ { C } ^ { \mathbf { F } } \cdot \mathbf { T } d s is

(Multiple Choice)
4.8/5
(38)

Let F(x,y,z)=xyi+y2j+2k\mathbf { F } ( x , y , z ) = x y \mathbf { i } + y ^ { 2 } \mathbf { j } + 2 \mathbf { k } and C be the boundary of z=x2+y2z = x ^ { 2 } + y ^ { 2 } below z = 1.Using Stokes' Theorem, CFTds\int _ { C } \mathbf { F } \cdot \mathbf { T } d s is

(Multiple Choice)
4.7/5
(32)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=2costi+2sintj\mathbf { r } ( t ) = 2 \cos t \mathbf { i } + 2 \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

(Multiple Choice)
4.9/5
(34)

Using Green's Theorem, the line integral \int C (x2+y)dx\left( x ^ { 2 } + y \right) d x where C is the parabola y=4x2y = 4 - x ^ { 2 } from (-2, 0) to (0, 4), from (0, 4) to (-2, 0), along the parabola, the line segment from (2, 0) to (-2, 0), is

(Multiple Choice)
4.8/5
(33)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (2, 0) to (0, 2) is

(Multiple Choice)
4.8/5
(29)

Let F(x,y,z)=2xyi+(6y2xz)j+10zk,r(t)=ti+t2j+t3k,0t1\mathbf { F } ( x , y , z ) = 2 x y \mathbf { i } + \left( 6 y ^ { 2 } - x z \right) \mathbf { j } + 10 z \mathbf { k } , \mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + t ^ { 3 } \mathbf { k } , 0 \leq t \leq 1 . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

(Multiple Choice)
4.7/5
(36)

The area of the surface r(u,v)=uiv2j+v2k\mathbf { r } ( u , v ) = u \mathbf { i } - \frac { v } { 2 } \mathbf { j } + \frac { v } { 2 } \mathbf { k } , where 0u2,0v10 \leq u \leq 2,0 \leq v \leq 1 is

(Multiple Choice)
4.8/5
(34)

Let F(x,y,z)=y2i+xj+z2k\mathbf { F } ( x , y , z ) = y ^ { 2 } \mathbf { i } + x \mathbf { j } + z ^ { 2 } \mathbf { k } and C be the boundary of z=x2+y2z = x ^ { 2 } + y ^ { 2 } below z = 1. Using Stokes' Theorem, CFTds\int _ { C } \mathbf { F } \cdot \mathbf { T } d s is

(Multiple Choice)
4.8/5
(35)
Showing 81 - 100 of 180
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)