Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The divergence of F(x,y,z)=x2y2i+y2z2j+x2z2k\mathbf { F } ( x , y , z ) = x ^ { 2 } y ^ { 2 } \mathbf { i } + y ^ { 2 } z ^ { 2 } \mathbf { j } + x ^ { 2 } z ^ { 2 } \mathbf { k } is

(Multiple Choice)
4.8/5
(25)

Let F(x,y)=yi+xj,r(t)=3t2itj,0t1\mathbf { F } ( x , y ) = y \mathbf { i } + x \mathbf { j } , \mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } - t \mathbf { j } , 0 \leq t \leq 1 Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

(Multiple Choice)
4.7/5
(34)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=3costi+3sintj\mathbf { r } ( t ) = 3 \cos t \mathbf { i } + 3 \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

(Multiple Choice)
4.8/5
(35)

Let F(x,y,z)=2xi2xj+z2k\mathbf { F } ( x , y , z ) = 2 x \mathbf { i } - 2 x \mathbf { j } + z ^ { 2 } \mathbf { k } and S is x2+y2=4,0z3x ^ { 2 } + y ^ { 2 } = 4,0 \leq z \leq 3 .Using the Divergence Theorem, S\iint S FndS\mathbf { F } \cdot \mathbf { n } d S is

(Multiple Choice)
4.8/5
(34)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (1, 0) to (1, 1) and then the line segment from (1, 1) to (0, 1) is

(Multiple Choice)
4.9/5
(37)

The rectangular equation for the parametric surface and x(u,v)=sinucosvx ( u , v ) = \sin u \cos v is

(Multiple Choice)
4.9/5
(48)

The work done by the force F(x,y)=2xyi+(x2+y2)j\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + \left( x ^ { 2 } + y ^ { 2 } \right) \mathbf { j } moving along y = x from (0, 0) to (1, 1) is

(Multiple Choice)
4.9/5
(30)

Using Green's Theorem, the line integral \int C 2xydxx2ydy2 x y d x - x ^ { 2 } y d y where C is the triangle with vertices at (0, 0), (1, 0), and (1, 1), is

(Multiple Choice)
4.8/5
(43)

The work done by the force F(x,y)=(2x+3y)i+xyj\mathbf { F } ( x , y ) = ( 2 x + 3 y ) \mathbf { i } + x y \mathbf { j } moving along r(t)=4sinticostj\mathbf { r } ( t ) = 4 \sin t \mathbf { i } - \cos t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

(Multiple Choice)
4.8/5
(39)

If I = \int C (ey2xy)dx+(xeyx2)dy\left( e ^ { y } - 2 x y \right) d x + \left( x e ^ { y } - x ^ { 2 } \right) d y is independent of the path where C is a curve from (2, 1) to (1, 0) then I is

(Multiple Choice)
4.9/5
(33)

Let f(x,y)=2x33x2y+xy2f ( x , y ) = 2 x ^ { 3 } - 3 x ^ { 2 } y + x y ^ { 2 } . Its gradient vector field is

(Multiple Choice)
4.9/5
(37)

Let F(x,y,z)=3x2yi2xy3j\mathbf { F } ( x , y , z ) = 3 x ^ { 2 } y \mathbf { i } - 2 x y ^ { 3 } \mathbf { j } Then curl F is

(Multiple Choice)
4.8/5
(30)

The line integral \int C xyds,x y d s , where C is the curve x=4t,y=t2,0t2x = 4 t , y = t ^ { 2 } , 0 \leq t \leq 2 is

(Multiple Choice)
5.0/5
(31)

If F(x,y)=(1x2+1y2)i+(12xy3)j\mathbf { F } ( x , y ) = \left( \frac { 1 } { x ^ { 2 } } + \frac { 1 } { y ^ { 2 } } \right) \mathbf { i } + \left( \frac { 1 - 2 x } { y ^ { 3 } } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

(Multiple Choice)
4.9/5
(37)

An equation of the tangent plane to the surfaceat (1, 1, 1) is

(Multiple Choice)
5.0/5
(39)

The outer unit normal vector to z=9x2y2z = 9 - x ^ { 2 } - y ^ { 2 } is

(Multiple Choice)
4.8/5
(29)

Let f(x,y)=tan1(yx)f ( x , y ) = \tan ^ { - 1 } \left( \frac { y } { x } \right) . Its gradient vector field is

(Multiple Choice)
4.8/5
(36)

The area of the surface r(u,v)=4ucosvi+4usinvj+u2k\mathbf { r } ( u , v ) = 4 u \cos v \mathbf { i } + 4 u \sin v \mathbf { j } + u ^ { 2 } \mathbf { k } , where is

(Multiple Choice)
4.8/5
(28)

Let F(x,y)=2xyi+(x2y)j,r(t)=sinti2costj,0tπ\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + ( x - 2 y ) \mathbf { j } , \mathbf { r } ( t ) = \sin t \mathbf { i } - 2 \cos t \mathbf { j } , 0 \leq t \leq \pi . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

(Multiple Choice)
5.0/5
(33)

The surface integral \int \int S x2+y2+z2dS\sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d S where S is z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } between z=0z = 0 and z=2z = 2 is

(Multiple Choice)
4.8/5
(38)
Showing 41 - 60 of 180
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)