Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let F(x,y,z)=4yi3zj+xk\mathbf { F } ( x , y , z ) = 4 y \mathbf { i } - 3 z \mathbf { j } + x \mathbf { k } and C be the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). Using Stokes' Theorem, CFTds\int _ { C } \mathbf { F } \cdot \mathbf { T } d s is

(Multiple Choice)
4.7/5
(38)

Let F(x,y,z)=x2i+y2j+z2k\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } + y ^ { 2 } \mathbf { j } + z ^ { 2 } \mathbf { k } and S is x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 . Using the Divergence Theorem, S\iint S FndS\mathbf { F } \bullet \mathbf { n } d S is

(Multiple Choice)
4.7/5
(31)

Applying Green's Theorem, the area of the region bounded by y=2x2y = 2 x ^ { 2 } and y=8xy = 8 x is

(Multiple Choice)
4.8/5
(33)

Let f(x,y)=xsiny+ycosxf ( x , y ) = x \sin y + y \cos x Its gradient vector field is

(Multiple Choice)
4.9/5
(42)

If I = \int C 1ydxxy2dy\frac { 1 } { y } d x - \frac { x } { y ^ { 2 } } d y is independent of the path where C is a curve from (5, -1) to (9, -3) then I is

(Multiple Choice)
4.8/5
(34)

If F(x,y)=(2x1y)i+(xx2y2)j\mathbf { F } ( x , y ) = \left( \frac { 2 x - 1 } { y } \right) \mathbf { i } + \left( \frac { x - x ^ { 2 } } { y ^ { 2 } } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

(Multiple Choice)
4.8/5
(48)

Using Green's Theorem, the line integral \int C 2xydxx2ydy2 x y d x - x ^ { 2 } y d y where C is the triangle with vertices at (0, 0), (1, 0), and (0, 1), is

(Multiple Choice)
4.8/5
(29)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (3, 0) to (3, 3) and then the line segment from (3, 3) to (0, 3) is

(Multiple Choice)
4.9/5
(40)

The work done by the force F(x,y)=(yx)i+x2yj\mathbf { F } ( x , y ) = ( y - x ) \mathbf { i } + x ^ { 2 } y \mathbf { j } moving along the line segment from (1, 1) to (2, 2) and then the line segment from (2, 2) to (2, 4) is

(Multiple Choice)
4.9/5
(33)

Let F(x,y,z)=xi+yj+zkx2+y2+z2\mathbf { F } ( x , y , z ) = \frac { x \mathbf { i } + y \mathbf { j } + z \mathbf { k } } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } and S is the region bounded between x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 and x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 . Using the Divergence Theorem, S\iint S FndS\mathbf { F } \cdot \mathbf { n } d S is

(Multiple Choice)
4.8/5
(33)

If F(x,y)=(2x+lny)i+(y2+xy)j\mathbf { F } ( x , y ) = ( 2 x + \ln y ) \mathbf { i } + \left( y ^ { 2 } + \frac { x } { y } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

(Multiple Choice)
4.9/5
(38)

A parameterization of x2+4y2=16x ^ { 2 } + 4 y ^ { 2 } = 16 is

(Multiple Choice)
4.8/5
(33)

A parameterization of x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 is

(Multiple Choice)
4.8/5
(30)

The domain of the vector field F(x,y)=xyx2+y2i+5x2y2j\mathbf { F } ( x , y ) = \frac { x y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { 5 } { x ^ { 2 } - y ^ { 2 } } \mathbf { j } is

(Multiple Choice)
4.9/5
(36)

If F(x,y)=(ey2x)i(xey+siny)j\mathbf { F } ( x , y ) = \left( e ^ { - y } - 2 x \right) \mathbf { i } - \left( x e ^ { - y } + \sin y \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

(Multiple Choice)
4.7/5
(27)

Let F(x,y,z)=z2i+x2j+y2k\mathbf { F } ( x , y , z ) = z ^ { 2 } \mathbf { i } + x ^ { 2 } \mathbf { j } + y ^ { 2 } \mathbf { k } and C be the boundary of the surface 4x2y2=z4 - x ^ { 2 } - y ^ { 2 } = z above z = 0. Using Stokes' Theorem, CFTds\int _ { C } \mathbf { F } \cdot \mathbf { T } d s is

(Multiple Choice)
4.9/5
(31)

The work done by the force F(x,y)=3yi+4xj\mathbf { F } ( x , y ) = 3 y \mathbf { i } + 4 x \mathbf { j } moving along r(t)=2t2itj\mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } - t \mathbf { j } with 0t10 \leq t \leq 1 is

(Multiple Choice)
4.8/5
(35)

Let F(x,y,z)=(yx)i+(xz)j+(xy)k\mathbf { F } ( x , y , z ) = ( y - x ) \mathbf { i } + ( x - z ) \mathbf { j } + ( x - y ) \mathbf { k } and C be the triangle with vertices (2, 0, 0), (0, 2, 0), and (0, 0, 2). Using Stokes' Theorem, CFTds\int _ { C } \mathbf { F } \cdot \mathbf { T } d s is

(Multiple Choice)
5.0/5
(42)

Let F(x,y,z)=(x+y)i+yj+zk\mathbf { F } ( x , y , z ) = ( x + y ) \mathbf { i } + y \mathbf { j } + z \mathbf { k } and S is z=1x2y2z = 1 - x ^ { 2 } - y ^ { 2 } between z=1x2y2z = 1 - x ^ { 2 } - y ^ { 2 } and z=1z = 1 Then the flux of  F \text { F } through S is

(Multiple Choice)
4.8/5
(32)

The domain of the vector field F(x,y)=1x2i+lnyj\mathbf { F } ( x , y ) = \sqrt { 1 - x ^ { 2 } } \mathbf { i } + \ln y \mathbf { j } is

(Multiple Choice)
4.9/5
(40)
Showing 141 - 160 of 180
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)