Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

A parameterization of 2x3y+z=52 x - 3 y + z = 5 is

(Multiple Choice)
4.8/5
(40)

Let F(x,y,z)=3zi4j+yk\mathbf { F } ( x , y , z ) = 3 z \mathbf { i } - 4 \mathbf { j } + y \mathbf { k } and S is x+y+z=1x + y + z = 1 in the first octant. Then the flux of  F \text { F } through S is

(Multiple Choice)
4.8/5
(26)

Let F(x,y,z)=2zk\mathbf { F } ( x , y , z ) = 2 z \mathbf { k } and S is x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 . Using the Divergence Theorem, S\iint S FndS\mathbf { F } \bullet \mathbf { n } d S is

(Multiple Choice)
4.8/5
(31)

Let F(x,y,z)=zi+xj+yk,r(t)=costi+sintj+tk,0t2π\mathbf { F } ( x , y , z ) = z \mathbf { i } + x \mathbf { j } + y \mathbf { k } , \mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } , 0 \leq t \leq 2 \pi . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

(Multiple Choice)
4.7/5
(33)

Let f(x,y)=2x3y+7x2y25xy3f ( x , y ) = 2 x ^ { 3 } y + 7 x ^ { 2 } y ^ { 2 } - 5 x y ^ { 3 } . Its gradient vector field is

(Multiple Choice)
4.7/5
(34)

The line integral \int C (x+y)ds( x + y ) d s , where C is the curve x=t,y=1t,0t1,x = t , y = 1 - t , 0 \leq t \leq 1 , is

(Multiple Choice)
4.7/5
(36)

The divergence of F(x,y,z)=(y2+z2)i+xeyjxeycoszk\mathbf { F } ( x , y , z ) = \left( y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + x e ^ { y } \mathbf { j } - x e ^ { y } \cos z \mathbf { k } is

(Multiple Choice)
4.8/5
(33)

The surface integral \int \int S xdSx d S where S is z=x2z = x ^ { 2 } in the first octant bounded by x=1,y=2x = 1 , y = 2 and the coordinate planes, is

(Multiple Choice)
4.9/5
(32)

Let f(x,y,z)=ln(x2+y2+z2)f ( x , y , z ) = \ln \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) . Its gradient vector field is

(Multiple Choice)
4.8/5
(31)

The line integral \int C (x+y)dx+(y+z)dy+(x+z)dz( x + y ) d x + ( y + z ) d y + ( x + z ) d z , where C is the line segment from (0,0,0) to (1,2,4), is

(Multiple Choice)
4.9/5
(38)

Let F(x,y,z)=x(x2+y2)32i+y(x2+y2)32j+k\mathbf { F } ( x , y , z ) = \frac { x } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathbf { i } + \frac { y } { \left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathbf { j } + \mathbf { k } . Then curl F is

(Multiple Choice)
4.9/5
(37)

If F(x,y)=(2xyysinx)i+(x2+cosx)j\mathbf { F } ( x , y ) = ( 2 x y - y \sin x ) \mathbf { i } + \left( x ^ { 2 } + \cos x \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

(Multiple Choice)
4.8/5
(42)

Using Green's Theorem, the line integral \int C cosydx+cosxdy\cos y d x + \cos x d y where C is the rectangle with vertices (0,0),(π3,0),(π3,π4)( 0,0 ) , \left( \frac { \pi } { 3 } , 0 \right) , \left( \frac { \pi } { 3 } , \frac { \pi } { 4 } \right) and (0,π4)\left( 0 , \frac { \pi } { 4 } \right) is

(Multiple Choice)
4.7/5
(31)

Let f(x,y)=sinx+xy+cosy.f ( x , y ) = \sin x + x y + \cos y . Its gradient vector field is

(Multiple Choice)
4.8/5
(37)

Let F(x,y,z)=xzi+xyj+y2k\mathbf { F } ( x , y , z ) = x z \mathbf { i } + x y \mathbf { j } + y ^ { 2 } \mathbf { k } s and C be the boundary of the surface consisting of z=4x2z = 4 - x ^ { 2 } in the first octant cut by y = 3, and the coordinate planes. Using Stokes' Theorem, CFTds\int _ { C } \mathbf { F } \cdot \mathbf { T } d s is

(Multiple Choice)
4.9/5
(30)

Let F(x,y,z)=4xi3yj+5k\mathbf { F } ( x , y , z ) = 4 x \mathbf { i } - 3 y \mathbf { j } + 5 \mathbf { k } and S is x2+y2=zx ^ { 2 } + y ^ { 2 } = z such that x2+y24x ^ { 2 } + y ^ { 2 } \leq 4 Then the flux of  F \text { F } through S is

(Multiple Choice)
4.7/5
(41)

Using Green's Theorem, the line integral \int C 4ydx+3xdy4 y d x + 3 x d y where C is the quadrilateral with vertices at (0, 0), (1, 0), (1, 1), and (0, 1), is

(Multiple Choice)
4.8/5
(26)

If F(x,y)=(6x5y)i(5x6y2)j\mathbf { F } ( x , y ) = ( 6 x - 5 y ) \mathbf { i } - \left( 5 x - 6 y ^ { 2 } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

(Multiple Choice)
4.8/5
(41)

The surface integral \int \int S (x+y)dS( x + y ) d S where S is 4x+3y+6z=124 x + 3 y + 6 z = 12 in the first octant, is

(Multiple Choice)
4.8/5
(31)

The domain of the vector field F(x,y,z)=lnxi+lnyj+lnzk\mathbf { F } ( x , y , z ) = \ln x \mathbf { i } + \ln y \mathbf { j } + \ln z \mathbf { k } is

(Multiple Choice)
4.7/5
(40)
Showing 61 - 80 of 180
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)