Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The area bounded by y2=4xy ^ { 2 } = 4 x and x2=4yx ^ { 2 } = 4 y is

(Multiple Choice)
4.8/5
(43)

If R is the region bounded by y=4x2,y=x,y=xy = \sqrt { 4 - x ^ { 2 } } , y = x , y = - x then \iint R (x2+y2)dA\left( x ^ { 2 } + y ^ { 2 } \right) d A in polar form is

(Multiple Choice)
4.9/5
(41)

By Fubini's Theorem, the double integral \iint R xydA\sqrt { x y } d A with R={(x,y):0x1,0y1}R = \{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq 1 \} is

(Multiple Choice)
4.8/5
(36)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=2+cos(θ),0θπr = 2 + \cos ( \theta ) , 0 \leq \theta \leq \pi and the polar axis with area density ρ(r,θ)=sinθ\rho ( r , \theta ) = \sin \theta is

(Multiple Choice)
4.9/5
(41)

The moment of inertia of a lamina in the shape of a region in the xy-plane bounded by x=3,y=2,x=0x = 3 , y = 2 , x = 0 and the x-axis with area density ρ(x,y)=xy2\rho ( x , y ) = x y ^ { 2 } about the y-axis is

(Multiple Choice)
4.8/5
(42)

The partial integral 12xy2dy\int _ { 1 } ^ { 2 } \frac { x } { y ^ { 2 } } d y is

(Multiple Choice)
4.8/5
(31)

If σ(x,y,z)=x2+y2+z2\sigma ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } is the volume density of the solid between two concentric spheres with radii 1 and 2, then its mass is

(Multiple Choice)
4.7/5
(45)

The surface area of the surface x2+y2+z2=36x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36 lying within x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 is

(Multiple Choice)
4.9/5
(37)

The cylindrical coordinates of the given rectangular coordinates (0, 1, -3) are

(Multiple Choice)
4.9/5
(31)

If ρ(x,y,z)=x\rho ( x , y , z ) = x is the volume density function of a solid enclosed by 100x+25y+16z=400100 x + 25 y + 16 z = 400 and all the coordinate planes, its total mass is

(Multiple Choice)
4.7/5
(37)

The surface area of the surface cut from 36x+16y+9z=14436 x + 16 y + 9 z = 144 by x = 0, y = 0, and z = 0 is

(Multiple Choice)
4.8/5
(33)

Let x=rcosθx = r \cos \theta and y=rsinθy = r \sin \theta Then (x,y)(r,θ)\frac { \partial ( x , y ) } { \partial ( r , \theta ) } is

(Multiple Choice)
4.9/5
(30)

Using a change of variables, the double integral \iint R (x+y)2sin2(xy)dA( x + y ) ^ { 2 } \sin ^ { 2 } ( x - y ) d A where R is region bounded by the quadrilateral with vertices (π,0),(3π2,π2),(π,π)( \pi , 0 ) , \left( \frac { 3 \pi } { 2 } , \frac { \pi } { 2 } \right) , ( \pi , \pi ) and (π2,π2)\left( \frac { \pi } { 2 } , \frac { \pi } { 2 } \right) is

(Multiple Choice)
4.9/5
(36)

The iterated integral 0π20π20xzcos(yz)dydxdz\int _ { 0 } ^ { \frac { \pi } { 2 } }\int _ { 0 } ^ { \frac { \pi } { 2 } } \int _ { 0 } ^ { x z } \cos \left( \frac { y } { z } \right) d y d x d z is

(Multiple Choice)
4.8/5
(26)

The surface area of the surface cut from z=x+2yz = x + 2 y by x = 0, y = 0, x = 1, and y = 2 is

(Multiple Choice)
4.8/5
(37)

The area bounded by y=x29y = x ^ { 2 } - 9 and y=9x2y = 9 - x ^ { 2 } is

(Multiple Choice)
4.7/5
(31)

The surface area of the surface x2+y2=3zx ^ { 2 } + y ^ { 2 } = 3 z lying within x2+y2+z2=4zx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 z is

(Multiple Choice)
4.7/5
(36)

If the order of integration of 02[x24xf(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { x ^ { 2 } } ^ { 4 x } f ( x , y ) d y \right] d x is switched, the result is

(Multiple Choice)
4.9/5
(32)

The surface area of the surface x2+z2=4x ^ { 2 } + z ^ { 2 } = 4 lying within x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 is

(Multiple Choice)
4.8/5
(34)

The iterated integral 12[02xxy3dy]dx\int _ { 1 } ^ { 2 } \left[ \int _ { 0 } ^ { 2 x } x y ^ { 3 } d y \right] d x is

(Multiple Choice)
4.7/5
(39)
Showing 141 - 160 of 181
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)