Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let I=02[04x2sin(x2+y2)dy]dxI = \int _ { 0 } ^ { 2 } \left[ \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \sin \left( x ^ { 2 } + y ^ { 2 } \right) d y \right] d x Then I in polar form is

(Multiple Choice)
4.8/5
(37)

If R is the region bounded by y=2x,y=x2y = 2 x , y = \frac { x } { 2 } and x=π2x = \frac { \pi } { 2 } then \iint R sinxdA\sin x d A is

(Multiple Choice)
4.9/5
(32)

The rectangular coordinates of the given cylindrical coordinates (2,π6,5)\left( 2 , \frac { \pi } { 6 } , - 5 \right) are

(Multiple Choice)
4.8/5
(31)

If R is the region bounded by y = x, y = 2, and xy = 1, then \iint R y2x2dA\frac { y ^ { 2 } } { x ^ { 2 } } d A is

(Multiple Choice)
4.9/5
(40)

The rectangular coordinates of the given spherical coordinates (4,π3,2π3)\left( 4 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \right) are

(Multiple Choice)
4.8/5
(29)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, 8y=x28 y = x ^ { 2 } and y = 2 with area density ρ(x,y)=y+1\rho ( x , y ) = y + 1 is

(Multiple Choice)
4.8/5
(45)

The iterated integral 0π402r0cosθrsec3(θ)dzdrdθ\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 r} \int_{0}^{\cos \theta} r \sec ^{3}(\theta) d z d r d \theta is

(Multiple Choice)
4.8/5
(39)

The iterated integral 0π42sinθ2cosθ0rsinθrcos(θ)dzdrdθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \int _ { 2 \sin \theta } ^ { 2 \cos \theta } \int _ { 0 } ^ { r \sin \theta } r \cos ( \theta ) d z d r d \theta is

(Multiple Choice)
4.9/5
(27)

Let I=02[04x2dy]dxI = \int _ { 0 } ^ { 2 } \left[ \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } d y \right] d x Then I in polar form is

(Multiple Choice)
4.7/5
(34)

By Fubini's Theorem, the double integral \iint R 2xtan(y)dA2 x \tan ( y ) d A with R={(x,y):0x1,0yπ4}R = \left\{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq \frac { \pi } { 4 } \right\} is

(Multiple Choice)
4.9/5
(40)

Let and x=uvx = u - v Then y=vwy = v - w is

(Multiple Choice)
4.9/5
(37)

The moment of inertia of a lamina in the shape of a region in the xy-plane bounded by y = sin x, the x-axis, from x = 0 to x =? with area density ρ(x,y)=y\rho ( x , y ) = y about the y-axis is

(Multiple Choice)
4.9/5
(31)

The volume of the solid bounded by is

(Multiple Choice)
5.0/5
(32)

The iterated integral 0π[0π2xsin(y)dx]dy\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { \pi } 2 x \sin ( y ) d x \right] d y is

(Multiple Choice)
4.8/5
(37)

Using cylindrical coordinates, the volume of the solid in the first octant bounded by x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and z = x is

(Multiple Choice)
4.8/5
(34)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x-axis, y=sinxy = \sin x from x = 0 to x =?with area density ρ(x,y)=y\rho ( x , y ) = y is

(Multiple Choice)
4.9/5
(38)

Using spherical coordinates, the triple integral \iiint E xyzdVx y z d V where E is the solid x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 is

(Multiple Choice)
4.7/5
(35)

Let x=u+v4x = \frac { u + v } { 4 } and y=vu4y = \frac { v - u } { 4 } Then (x,y)(u,v)\frac { \partial ( x , y ) } { \partial ( u , v ) } is

(Multiple Choice)
4.8/5
(30)

The iterated integral 0π2π6π202ρ3sin(φ)cosθdρdφdθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 2 } } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin ( \varphi ) \cos \theta d \rho d \varphi d \theta is

(Multiple Choice)
4.7/5
(32)

The volume of the solid bounded above by z=r2z = r ^ { 2 } and below by z=2rsinθz = 2 r \sin \theta is

(Multiple Choice)
5.0/5
(41)
Showing 161 - 180 of 181
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)