Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Using spherical coordinates, the triple integral \iiint E e(x2+y2+z2)12dVe ^ { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 1 } { 2 } } } d V where E is the solid x2+y2+z21x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 1 is

(Multiple Choice)
4.8/5
(41)

The triple integral \iiint E y2dVy ^ { 2 } d V where E is the region bounded by the surfaces x2+y=1,z2+2y=4,y=0x ^ { 2 } + y = 1 , z ^ { 2 } + 2 y = 4 , y = 0 is

(Multiple Choice)
4.9/5
(44)

Using spherical coordinates, the volume of the solid inside x2+y2+z2=4zx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 z and above x2+y2=z2x ^ { 2 } + y ^ { 2 } = z ^ { 2 } is

(Multiple Choice)
4.9/5
(37)

The volume of the surface bounded by the graph of z=ex+yz = e ^ { x + y } with 0x1,0y10 \leq x \leq 1,0 \leq y \leq 1 is

(Multiple Choice)
4.9/5
(36)

Let and z = z. Then x=rcosθx = r \cos \theta is

(Multiple Choice)
4.9/5
(39)

Let I=03[09y2ex2+y2dx]dxI = \int _ { 0 } ^ { 3 } \left[ \int _ { 0 } ^ { \sqrt { 9 - y ^ { 2 } } } e ^ { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x \right] d x Then I in polar form is

(Multiple Choice)
4.9/5
(32)

If the order of integration of 01[y2y3f(x,y)dx]dy\int _ { 0 } ^ { 1 } \left[ \int _ { y ^ { 2 } } ^ { \sqrt [ 3 ] { y } } f ( x , y ) d x \right] d y is switched, the result is

(Multiple Choice)
4.8/5
(35)

The volume of the solid cut out of z2+r2=4z ^ { 2 } + r ^ { 2 } = 4 by r = 1 is

(Multiple Choice)
4.9/5
(41)

The surface area of the surface x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 above z = 0 and inside x2+y2=2xx ^ { 2 } + y ^ { 2 } = 2 x is

(Multiple Choice)
4.8/5
(41)

The triple integral \iiint E (x2+z2)dV\left( x ^ { 2 } + z ^ { 2 } \right) d V where E is the region bounded by the plane 12x+20y+15z=6012 x + 20 y + 15 z = 60 and the coordinate planes is

(Multiple Choice)
4.7/5
(36)

The triple integral \iiint E xydVx y d V where E is the tetrahedron with vertices (0, 0, 0), (1, 1, 0), (1, 0, 0), and (1, 0, 1) is

(Multiple Choice)
4.9/5
(39)

The iterated integral 0π4[012xcos(y)dx]dy\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 1 } 2 x \cos ( y ) d x \right] d y is

(Multiple Choice)
4.9/5
(30)

Let x=u+v2x = \frac { u + v } { 2 } and y=uv2y = \frac { u - v } { 2 } Then (x,y)(u,v)\frac { \partial ( x , y ) } { \partial ( u , v ) } is

(Multiple Choice)
4.9/5
(44)

The iterated integral 02π02r4r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 2 } } \int _ { r } ^ { \sqrt { 4 - r ^ { 2 } } } r d z d r d \theta is

(Multiple Choice)
4.9/5
(33)

Using a change of variables, the double integral \iint R xy1+x2y2dA\frac { x y } { 1 + x ^ { 2 } y ^ { 2 } } d A where R is the region bounded by xy = 1, xy = 4, x = 1, and x = 4 is

(Multiple Choice)
4.9/5
(24)

The triple integral \iiint E xdVx d V where E is the region bounded by the plane x+2y+3z=6x + 2 y + 3 z = 6 and the coordinate planes is

(Multiple Choice)
4.8/5
(41)

If ρ(x,y,z)=x2+y2+z2\rho ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } is the mass density of the solid bounded by x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 then its total mass is

(Multiple Choice)
4.9/5
(44)

Using cylindrical coordinates, the volume of the solid bounded by x2+y2+z=1x ^ { 2 } + y ^ { 2 } + z = 1 and z = 0 is

(Multiple Choice)
4.9/5
(41)

The volume of the solid bounded by x = z, x = 8 - z, y = z, y = 8 and z = 0, z = 4 is

(Multiple Choice)
4.7/5
(41)

Using cylindrical coordinates, the volume of the solid bounded by x2+y2=4y,x2+y2=4zx ^ { 2 } + y ^ { 2 } = 4 y , x ^ { 2 } + y ^ { 2 } = 4 z and z = 0 is

(Multiple Choice)
4.8/5
(30)
Showing 121 - 140 of 181
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)