Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The iterated integral 02π0π02ρ2sin(φ)dρdφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 2 } \rho ^ { 2 } \sin ( \varphi ) d \rho d \varphi d \theta is

(Multiple Choice)
4.8/5
(40)

The surface area of the surface cut from x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 by z = x is

(Multiple Choice)
4.8/5
(24)

Let x=u+3x = u + 3 and y=v4.y = v - 4 . Then (x,y)(u,v)\frac { \partial ( x , y ) } { \partial ( u , v ) } is

(Multiple Choice)
4.9/5
(37)

The surface area of the surface cut from x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 by x = 0, x = 1, z = 1, and z = 3 is

(Multiple Choice)
4.8/5
(34)

The iterated integral π4π4π4φ0cscθρ3sin(φ)sin2θdρdθdφ\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 4 } } \int _ {\frac { \pi } { 4 } } ^ { \varphi} \int _ { 0 } ^ { \csc \theta } \rho ^ { 3 } \sin ( \varphi ) \sin ^ { 2 } \theta d \rho d \theta d \varphi is

(Multiple Choice)
4.8/5
(46)

The iterated integral 0204y202yzdxdzdy\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - y ^ { 2 } } } \int _ { 0 } ^ { 2 - y } z d x d z d y is

(Multiple Choice)
4.8/5
(33)

The volume of the surface bounded by the graph of z=4x+2yz = 4 x + 2 y with 0x1,0y10 \leq x \leq 1,0 \leq y \leq 1 is

(Multiple Choice)
4.9/5
(41)

The moment of inertia of a lamina in the shape of a region in the xy-plane bounded by x2+y2=1,y0x ^ { 2 } + y ^ { 2 } = 1 , y \geq 0 and the x-axis with area density ρ(x,y)=y\rho ( x , y ) = y about the x-axis is

(Multiple Choice)
4.8/5
(30)

By Fubini's Theorem, the double integral \iint R yxdA\frac { y } { x } d A with R={(x,y):1x2,0y2}R = \{ ( x , y ) : 1 \leq x \leq 2,0 \leq y \leq 2 \} is

(Multiple Choice)
4.7/5
(38)

The cylindrical coordinates of the given rectangular coordinates (1,0,12)\left( - 1,0 , \frac { 1 } { 2 } \right) are

(Multiple Choice)
4.9/5
(33)

By Fubini's Theorem, the double integral \iint R 4xeydA4 x e ^ { y } d A with R={(x,y):0x1,0y1}R = \{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq 1 \} is

(Multiple Choice)
4.9/5
(29)

The surface area of the surface cut from x2+z2=16x ^ { 2 } + z ^ { 2 } = 16 by x = 0, x = 2, y = 0, and y = 3 is

(Multiple Choice)
4.9/5
(35)

The spherical coordinates of the given rectangular coordinates (1, -1, 2\sqrt { 2 } ) are

(Multiple Choice)
4.9/5
(40)

The surface area of the surface z = 2xy in the first octant lying inside 4x2+4y2=14 x ^ { 2 } + 4 y ^ { 2 } = 1 is

(Multiple Choice)
4.9/5
(23)

The volume of the solid in the first octant bounded by x+y+2z=2x + y + 2 z = 2 and 2x+2y+z=42 x + 2 y + z = 4 is

(Multiple Choice)
4.8/5
(38)

If R is the region bounded by x=1y2,y=xx = \sqrt { 1 - y ^ { 2 } } , y = x and the positive x-axis, then \iint R xdAx d A in polar form is

(Multiple Choice)
4.9/5
(41)

Using a change of variables, the double integral \iint R (xy)(x+4y)dA\sqrt { ( x - y ) ( x + 4 y ) } d A where R is the region bounded by the quadrilateral with vertices (0, 0), (1, 1), (5, 0), and (4, -1) is

(Multiple Choice)
4.9/5
(36)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, y = x and y = 2 - x with area density ρ(x,y)=6x+3y+3\rho ( x , y ) = 6 x + 3 y + 3 is

(Multiple Choice)
4.9/5
(31)

If R is the region bounded by y=9x2y = \sqrt { 9 - x ^ { 2 } } in the first quadrant, then \iint R ydAy d A in polar form is

(Multiple Choice)
4.8/5
(32)

The iterated integral 120x1x+xyxydzdydx\int _ { 1 } ^ { 2 } \int _ { 0 } ^ { x } \int _ { 1 } ^ {x+ x y } x y d z d y d x is

(Multiple Choice)
4.7/5
(37)
Showing 41 - 60 of 181
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)