Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Using spherical coordinates, the volume of the solid bounded by the cone φ=2π3\varphi = \frac { 2 \pi } { 3 } and the sphere ρ=6\rho = 6 is

(Multiple Choice)
4.7/5
(37)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and y =1 with area density ρ(x,y)=xy\rho ( x , y ) = x y is

(Multiple Choice)
4.8/5
(42)

The iterated integral 0π202016r2r2dzdrdθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \int _ { 0 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 16 - r ^ { 2 } } } r ^ { 2 } d z d r d \theta is

(Multiple Choice)
4.7/5
(32)

If σ(x,y,z)=k\sigma ( x , y , z ) = k is the volume density of the solid bounded by x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 then its moment of inertia about the z-axis is

(Multiple Choice)
4.8/5
(33)

Let I=33[09x2(x2+y2)dy]dxI = \int _ { - 3 } ^ { 3 } \left[ \int _ { 0 } ^ { \sqrt { 9 - x ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) d y \right] d x Then I in polar form is

(Multiple Choice)
4.8/5
(40)

The area bounded by x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 and y2=6xy ^ { 2 } = 6 x is

(Multiple Choice)
4.9/5
(36)

The iterated integral 01[01exdx]dy\int _ { 0 } ^ { 1 } \left[ \int _ { 0 } ^ { 1 } e ^ { x } d x \right] d y is

(Multiple Choice)
4.9/5
(27)

The volume of the solid above the polar plane bounded by z = 2r and r=1cosθr = 1 - \cos \theta is

(Multiple Choice)
4.8/5
(39)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x2+y2=1,x0,y0x ^ { 2 } + y ^ { 2 } = 1 , x \geq 0 , y \geq 0 with area density ρ(x,y)=x+y\rho ( x , y ) = x + y is

(Multiple Choice)
4.8/5
(41)

The surface area of the surface cut from 2x+yz+5=02 x + y - z + 5 = 0 by x = 0, x = 1, y = 0, and y = 4 is

(Multiple Choice)
4.9/5
(35)

The iterated integral 0π402cosθ20πρ2sin(φ)dφdρdθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \int _ { 0 } ^ { 2 \cos \theta 2 } \int _ { 0 } ^ { \pi } \rho ^ { 2 } \sin ( \varphi ) d \varphi d \rho d \theta is

(Multiple Choice)
4.8/5
(29)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, y=x2y = x ^ { 2 } and y = 1 with area density ρ(x,y)=x+y\rho ( x , y ) = x + y is

(Multiple Choice)
4.8/5
(28)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=2cos(θ)r = 2 - \cos ( \theta ) with area density ρ(r,θ)=r\rho ( r , \theta ) = r is

(Multiple Choice)
4.9/5
(39)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by x2+y2=4,x0,y0x ^ { 2 } + y ^ { 2 } = 4 , x \geq 0 , y \geq 0 and x + y = 2 with area density ρ(x,y)=xy\rho ( x , y ) = x y is

(Multiple Choice)
4.8/5
(30)

The iterated integral 14[x2xyxdy]dx\int _ { 1 } ^ { 4 } \left[ \int _ { x ^ { 2 } } ^ { x } \sqrt { \frac { y } { x } } d y \right] d x is

(Multiple Choice)
4.8/5
(32)

The iterated integral 1e[02xydx]dy\int _ { 1 } ^ { e } \left[ \int _ { 0 } ^ { 2 } \frac { x } { y } d x \right] d y is

(Multiple Choice)
4.8/5
(32)

The volume of the solid in the first octant bounded by and all the coordinate planes is

(Multiple Choice)
4.9/5
(37)

If R is the region bounded by x2+y2=1,x2+y2=9x ^ { 2 } + y ^ { 2 } = 1 , x ^ { 2 } + y ^ { 2 } = 9 then \iint R 5x2+y2dA5 \sqrt { x ^ { 2 } + y ^ { 2 } } d A in polar form is

(Multiple Choice)
4.8/5
(38)

The surface area of the surface z=x2+y2z = x ^ { 2 } + y ^ { 2 } below z = 4 is

(Multiple Choice)
4.7/5
(39)

The volume cut from the solid bounded x2+4y2=4x ^ { 2 } + 4 y ^ { 2 } = 4 by z = 0 and z = x + 2 is

(Multiple Choice)
4.8/5
(27)
Showing 101 - 120 of 181
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)