Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

By Fubini's Theorem, the double integral \iint R 6(x2y)dA6 \left( x ^ { 2 } - y \right) d A with R={(x,y):1x2,0y1}R = \{ ( x , y ) : - 1 \leq x \leq 2,0 \leq y \leq 1 \} is

(Multiple Choice)
4.7/5
(31)

Let and x=u+vx = u + v Then y=v+wy = v + w is

(Multiple Choice)
4.9/5
(34)

The iterated integral 0π202cos2θ04r2rsinθdzdrdθ\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \cos ^{2} \theta } \int_{0}^{4-r^{2} } r \sin \theta d z d r d \theta is

(Multiple Choice)
4.8/5
(39)

The iterated integral 03[0xx2exydy]dx\int _ { 0 } ^ { 3 } \left[ \int _ { 0 } ^ { x } x ^ { 2 } e ^ { x y } d y \right] d x is

(Multiple Choice)
4.8/5
(26)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=cos(2θ)r = \cos ( 2 \theta ) for the petal on the right with area density ρ(r,θ)=r\rho ( r , \theta ) = r is

(Multiple Choice)
4.8/5
(33)

If R is the region bounded by x2+y2=4,x2+y2=9x ^ { 2 } + y ^ { 2 } = 4 , x ^ { 2 } + y ^ { 2 } = 9 then \iint R (x2+y)dA\left( x ^ { 2 } + y \right) d A in polar form is

(Multiple Choice)
4.8/5
(31)

If R is the region bounded by x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 then \iint R x29x2dAx ^ { 2 } \sqrt { 9 - x ^ { 2 } } d A is

(Multiple Choice)
4.8/5
(34)

The triple integral \iiint E ydVy d V where E is the solid bounded by the plane 12x+20y+15z=6012 x + 20 y + 15 z = 60 and the coordinate planes is

(Multiple Choice)
4.9/5
(29)

The iterated integral 0π0cosθ01r2rdzdrdθ\int _ { 0 } ^ { \pi } \int _ { 0 } ^ {\cos \theta } \int _ { 0 } ^{\sqrt { 1 - r ^ { 2 }} } r d z d r d \theta is

(Multiple Choice)
4.8/5
(36)

The surface area of the surface x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 above z = 0 and inside x2+y2=3xx ^ { 2 } + y ^ { 2 } = 3 x is

(Multiple Choice)
4.9/5
(35)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, 3x+2y=183 x + 2 y = 18 and y = 0 with area density ρ(x,y)=xy\rho ( x , y ) = x y is

(Multiple Choice)
4.9/5
(29)

The volume of the surface bounded by the graph of z=1x+1yz = \frac { 1 } { x } + \frac { 1 } { y } with 1x2,1y21 \leq x \leq 2,1 \leq y \leq 2 is

(Multiple Choice)
4.9/5
(31)

The iterated integral 04[0ydx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { 0 } ^ { y } d x \right] d y is

(Multiple Choice)
4.8/5
(31)

Using a change of variables, the double integral \iint R xy1+x2y2dA\frac { x y } { 1 + x ^ { 2 } y ^ { 2 } } d A where R is the region bounded by xy = 1, xy = 5, x = 1, and x = 5 is

(Multiple Choice)
4.8/5
(22)

The iterated integral π4π20π20cosφρ4sin3(φ)cosθdρdθdφ\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 2 } } \int _ { 0 } ^ { \frac { \pi } { 2 } } \int _ { 0 } ^ { \cos \varphi } \rho ^ { 4 } \sin ^ { 3 } ( \varphi ) \cos \theta d \rho d \theta d \varphi is

(Multiple Choice)
4.9/5
(36)

The iterated integral 04[0y9+y2dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { 0 } ^ { y } \sqrt { 9 + y ^ { 2 } } d x \right] d y is

(Multiple Choice)
4.7/5
(29)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by y=xy = \sqrt { x } and y = x with area density ρ(x,y)=x\rho ( x , y ) = x is

(Multiple Choice)
4.9/5
(30)

Using a change of variables, the double integral \iint R (x+y)exydA( x + y ) e ^ { x - y } d A where R is the region bounded by the quadrilateral with vertices (4, 0), (6, 2), (4, 4), and (2, 2) is

(Multiple Choice)
4.9/5
(28)

The area bounded by y=x3y = x ^ { 3 } and y=x2y = x ^ { 2 } is

(Multiple Choice)
4.8/5
(29)

The iterated integral 0π0401rezdzdrdθ\int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 4 } \int _ { 0 } ^ { 1 } r e ^ { z } d z d r d \theta is

(Multiple Choice)
4.8/5
(36)
Showing 81 - 100 of 181
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)