Exam 12: Multivariable Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=xyz2,P=(1,2,1),u=12,0,32f ( x , y , z ) = x y z ^ { 2 } , P = ( 1,2,1 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , 0 , \frac { \sqrt { 3 } } { 2 } \right\rangle

(Essay)
4.8/5
(32)

Find the domain and range of f(x,y,z)=1x2+y2+z2+1f ( x , y , z ) = \frac { 1 } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 1 }

(Essay)
4.8/5
(28)

Find the domain and range of f(x,y,z)=xy2z23f ( x , y , z ) = \frac { x } { y ^ { 2 } - z ^ { 2 } - 3 }

(Essay)
4.8/5
(41)

Find the maximum value of the function f(x,y)=x2+4yf ( x , y ) = x ^ { 2 } + 4 y subject to x2+y2=1x ^ { 2 } + y ^ { 2 } = 1

(Multiple Choice)
4.9/5
(31)

Find the maximum and the minimum values of the function f(x,y)=x2yf ( x , y ) = x ^ { 2 } - y subject to x2+y2=1x ^ { 2 } + y ^ { 2 } = 1

(Essay)
4.7/5
(26)

Find the directional derivative of the given function at the specified point PP in the direction u\vec { u } f(x,y)=xey,P=(2,0),u=12,32f ( x , y ) = x e ^ { y } , P = ( 2,0 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle

(Essay)
4.8/5
(39)

Find the equation of the plane tangent to the surface given by the function at the specified point PP f(x,y)=cos(x)+sin(y2),P=(π,π),f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) ,

(Essay)
4.8/5
(34)

Find f\nabla f for f(x,y)=tan(x)yf ( x , y ) = \frac { \tan ( x ) } { y } .

(Multiple Choice)
4.9/5
(35)

Find a function of two variables with the given gradient, f=2xy3,3x2y2\nabla f = \left\langle 2 x y ^ { 3 } , 3 x ^ { 2 } y ^ { 2 } \right\rangle

(Essay)
4.9/5
(33)

Find the range of f(x,y,z)=2x4+y2+z6+4f ( x , y , z ) = \frac { 2 } { x ^ { 4 } + y ^ { 2 } + z ^ { 6 } + 4 }

(Multiple Choice)
4.8/5
(32)

Find the compliment of the set in R3R ^ { 3 } : all points (x,y,z)( x , y , z ) so that x>0x > 0 , y<0y < 0 , and z<0z < 0

(Essay)
4.9/5
(29)

Find dzdt\frac { d z } { d t } for z=sin(x2y),x=t,y=etz = \sin \left( x ^ { 2 } y \right) , x = t , y = e ^ { t }

(Essay)
4.9/5
(40)

Find the compliment of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that 1x<21 \leq x < 2 and 1<y21 < y \leq 2

(Essay)
4.7/5
(39)

Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=2zxy,P=(2,2,3),u=13,13,13f ( x , y , z ) = 2 z \sqrt { x y } , P = ( 2,2,3 ) , \vec { u } = \left\langle \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right\rangle

(Multiple Choice)
4.8/5
(35)

Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x3x2y,P=(1,2),u=32,12f ( x , y ) = x ^ { 3 } - x ^ { 2 } y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right\rangle

(Multiple Choice)
4.9/5
(35)

Find dzdt\frac { d z } { d t } for z=xy,x=t2,y=etz = \frac { x } { y } , x = t ^ { 2 } , y = e ^ { t }

(Multiple Choice)
4.9/5
(23)

Find a function with the given partial derivatives fx=ycos(xy)\frac { \partial f } { \partial x } = y \cos ( x y ) and fy=xcos(xy)\frac { \partial f } { \partial y } = x \cos ( x y )

(Multiple Choice)
4.7/5
(37)

Find fy\frac { \partial f } { \partial y } for f(x,y)=cos(xy)f ( x , y ) = \cos ( x y )

(Essay)
4.8/5
(32)

Find the discriminant of the given function f(x,y)=3x2+4xy+9y2f ( x , y ) = 3 x ^ { 2 } + 4 x y + 9 y ^ { 2 }

(Multiple Choice)
4.8/5
(27)

Find the direction in which the given function decreases most rapidly at the given point. f(x,y,z)=xezyex,P=(0,2,0)f ( x , y , z ) = x e ^ { z } - y e ^ { x } , P = ( 0,2,0 )

(Essay)
4.8/5
(33)
Showing 21 - 40 of 93
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)