Exam 12: Multivariable Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

For f(x,y)=x2yf ( x , y ) = x ^ { 2 } y find a line in the x direction tangent to the surface defined by f at (1,2).

(Multiple Choice)
4.9/5
(34)

Find fz\frac { \partial f } { \partial z } for f(x,y,z)=x2+xyz+y3f ( x , y , z ) = x ^ { 2 } + x y z + y ^ { 3 }

(Essay)
4.9/5
(45)

Determine if the given subset of R3R ^ { 3 } is open, closed, both open and closed, or neither open nor closed. All points (x,y,z)( x , y , z ) so that x1x \geq 1 , y<0y < 0 and z>0z > 0

(Multiple Choice)
4.9/5
(48)

Find dzdt\frac { d z } { d t } for z=sin(x2y),x=st,y=t2estz = \sin \left( x ^ { 2 } y \right) , x = \frac { s } { t } , y = t ^ { 2 } e ^ { s t }

(Essay)
4.9/5
(32)

Find the maximum and the minimum values of the function f(x,y,z)=x+2y+3zf ( x , y , z ) = x + 2 y + 3 z subject to x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1

(Essay)
4.9/5
(44)

Find the compliment of the set in R3R ^ { 3 } : all points (x,y,z)( x , y , z ) so that x0x \geq 0

(Essay)
4.8/5
(26)

Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=2zxy,P=(2,2,3),u=1,1,1f ( x , y , z ) = 2 z \sqrt { x y } , P = ( 2,2,3 ) , \vec { u } = \langle 1,1,1 \rangle

(Multiple Choice)
4.8/5
(27)

Find a function of two variables for the surface of revolution formed when the given function on the specified interval is revolved around the y-axis. f(x)=x2f ( x ) = x ^ { 2 } on [0,2][ 0,2 ]

(Essay)
4.9/5
(32)

Evaluate f(x,y,z)=x2yzf ( x , y , z ) = x ^ { 2 } y z at (1,2,1)( 1,2 , - 1 )

(Short Answer)
4.8/5
(39)

Find the line tangent to the surface given by the function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x2+xy,P=(1,2),u=12,32f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle

(Essay)
4.9/5
(31)

Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x2+xy,P=(1,2),u=1,3f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \langle 1 , \sqrt { 3 } \rangle

(Essay)
4.8/5
(36)

Find the domain of f(x,y)=xx2y2f ( x , y ) = \frac { x } { x ^ { 2 } - y ^ { 2 } }

(Multiple Choice)
4.8/5
(43)

Find and classify the critical points for f(x,y)=3x42xy+9y4f ( x , y ) = 3 x ^ { 4 } - 2 x y + 9 y ^ { 4 }

(Essay)
4.7/5
(34)

Find the minimum value of the function f(x,y)=x2+4yf ( x , y ) = x ^ { 2 } + 4 y subject to x2+y2=1x ^ { 2 } + y ^ { 2 } = 1

(Multiple Choice)
4.8/5
(42)

Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=cos(x)+sin(y2),P=(π,π),u=2,2f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) , \vec { u } = \langle \sqrt { 2 } , \sqrt { 2 } \rangle

(Essay)
4.8/5
(28)

Find f\nabla f for f(x,y)=exsin(y)f ( x , y ) = e ^ { x \sin ( y ) }

(Essay)
4.8/5
(29)

Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=xyz2,P=(1,2,1),u=1,3,0f ( x , y , z ) = x y z ^ { 2 } , P = ( 1,2,1 ) , \vec { u } = \langle 1 , \sqrt { 3 } , 0 \rangle

(Essay)
4.8/5
(22)

Find the direction in which the given function increases most rapidly at the given point. f(x,y,z)=xezyex,P=(0,2,0)f ( x , y , z ) = x e ^ { z } - y e ^ { x } , P = ( 0,2,0 )

(Essay)
4.9/5
(27)

Find the compliment of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that x>0x > 0 and y<0y < 0

(Essay)
4.8/5
(34)

Determine if the given subset of R3R ^ { 3 } is open, closed, both open and closed, or neither open nor closed. All points (x,y,z)( x , y , z ) so that x0x \geq 0

(Short Answer)
4.8/5
(29)
Showing 61 - 80 of 93
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)