Exam 12: Multivariable Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find fx\frac { \partial f } { \partial x } for f(x,y)=sin(x2y2)f ( x , y ) = \sin \left( x ^ { 2 } - y ^ { 2 } \right)

(Multiple Choice)
4.9/5
(38)

Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x2+xy,P=(1,2),u=12,32f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle

(Essay)
4.7/5
(29)

Find f\nabla f for f(x,y)=x2yf ( x , y ) = x ^ { 2 } y

(Essay)
4.7/5
(33)

Find the line tangent to the surface given by the function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=cos(x)+sin(y2),P=(π,π),u=22,22f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) , \vec { u } = \left\langle \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right\rangle

(Essay)
4.9/5
(45)

For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find a line in the y direction tangent to the surface defined by f at (1,2).

(Essay)
4.9/5
(37)

For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find a line in the x direction tangent to the surface defined by f at (1,2).

(Essay)
4.8/5
(42)

Evaluate f(x,y)=x2yf ( x , y ) = x ^ { 2 } y at (2,1)( 2 , - 1 )

(Short Answer)
4.9/5
(37)

Find the domain and range of f(x,y)=xy+2f ( x , y ) = \frac { x } { y + 2 }

(Essay)
4.7/5
(37)

Evaluate the limit if it exists: lim(x,y)(1,2)x2xy\lim _ { ( x , y ) \rightarrow ( 1,2 ) } x ^ { 2 } - x y

(Short Answer)
4.8/5
(36)

Evaluate f(x,y,z)=xexcos(z)f ( x , y , z ) = x e ^ { x } \cos ( z ) at (2,1,0)( 2,1,0 )

(Essay)
4.7/5
(40)

Find fx\frac { \partial f } { \partial x } for f(x,y)=exy2f ( x , y ) = e ^ { x - y ^ { 2 } }

(Essay)
4.8/5
(36)

Find the rate of change in the direction in which the given function increases most rapidly at the given point. f(x,y,z)=xezyex,P=(0,2,0)f ( x , y , z ) = x e ^ { z } - y e ^ { x } , P = ( 0,2,0 )

(Essay)
4.9/5
(34)

Evaluate the limit if it exists: lim(x,y)(0.0)(y+1)2cos(x)\lim _ { ( x , y ) \rightarrow ( 0.0 ) } ( y + 1 ) ^ { 2 } \cos ( x )

(Multiple Choice)
4.8/5
(40)

Find the range of f(x,y)=xx2y2f ( x , y ) = \frac { x } { x ^ { 2 } - y ^ { 2 } }

(Multiple Choice)
4.9/5
(40)

Find and classify the critical points for f(x,y)=3x2+4xy+9y2f ( x , y ) = 3 x ^ { 2 } + 4 x y + 9 y ^ { 2 }

(Essay)
4.8/5
(32)

Find a function with the given partial derivatives fx=2xy3\frac { \partial f } { \partial x } = 2 x y ^ { 3 } and fy=3x2y2\frac { \partial f } { \partial y } = 3 x ^ { 2 } y ^ { 2 }

(Essay)
4.8/5
(29)

Find the line tangent to the surface given by the function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x3x2y,P=(1,2),u=32,12f ( x , y ) = x ^ { 3 } - x ^ { 2 } y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right\rangle

(Multiple Choice)
4.8/5
(31)

Determine if the given subset of R2R ^ { 2 } is open, closed, both open and closed, or neither open nor closed. All points (x,y)( x , y ) so that 2x122 \leq x \leq 12 and πy7\pi \leq y \leq 7

(Multiple Choice)
4.9/5
(34)

Find fz\frac { \partial f } { \partial z } for f(x,y,z)=cos(xyz)f ( x , y , z ) = \cos ( x y z )

(Essay)
4.8/5
(42)

Determine if the given subset of R2R ^ { 2 } is open, closed, both open and closed, or neither open nor closed. All points (x,y)( x , y ) so that 1x<21 \leq x < 2 and 1<y21 < y \leq 2

(Short Answer)
4.7/5
(31)
Showing 41 - 60 of 93
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)