Exam 12: Multivariable Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the exact equation ycos(xy)+xcos(xy)dydx=0y \cos ( x y ) + x \cos ( x y ) \frac { d y } { d x } = 0

(Essay)
4.7/5
(35)

Find the boundary of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that x>0x > 0 and y<0y < 0

(Essay)
4.8/5
(29)

Find the directional derivative of the given function at the specified point PP in the direction u\vec { u } f(x,y)=cos(xy),P=(2,π6),u=310,110f ( x , y ) = \cos ( x y ) , P = \left( 2 , \frac { \pi } { 6 } \right) , \vec { u } = \left\langle \frac { 3 } { \sqrt { 10 } } , \frac { 1 } { \sqrt { 10 } } \right\rangle

(Multiple Choice)
4.9/5
(32)

Find the maximum value of the function f(x,y)=x2+y+2zf ( x , y ) = x ^ { 2 } + y + 2 z subject to x2+2y2+z2=1x ^ { 2 } + 2 y ^ { 2 } + z ^ { 2 } = 1

(Multiple Choice)
4.7/5
(33)

Find the boundary of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that 1x<21 \leq x < 2 and 1<y21 < y \leq 2

(Essay)
4.8/5
(30)

Find fz\frac { \partial f } { \partial z } for f(x,y,z)=exy2z3f ( x , y , z ) = e ^ { x y ^ { 2 } z ^ { 3 } }

(Multiple Choice)
4.9/5
(35)

Evaluate f(x,y,z)=exsin(y)cos(z)f ( x , y , z ) = e ^ { x } \sin ( y ) \cos ( z ) at (0,π2,0)\left( 0 , \frac { \pi } { 2 } , 0 \right)

(Multiple Choice)
4.9/5
(33)

Find dzdt\frac { d z } { d t } for z=xy,x=t2s2,y=setz = \frac { x } { y } , x = t ^ { 2 } s ^ { 2 } , y = s e ^ { t }

(Multiple Choice)
4.8/5
(27)

Find the minimum value of the function f(x,y)=x2+y+2zf ( x , y ) = x ^ { 2 } + y + 2 z subject to x2+2y2+z2=1x ^ { 2 } + 2 y ^ { 2 } + z ^ { 2 } = 1

(Multiple Choice)
4.8/5
(31)

Evaluate f(x,y)=x2+y3f ( x , y ) = x ^ { 2 } + y ^ { 3 } at (2,2)( 2 , - 2 )

(Multiple Choice)
4.9/5
(34)

Find the discriminant of the given function f(x,y)=x2y3f ( x , y ) = x ^ { 2 } y ^ { 3 }

(Essay)
4.8/5
(41)

Find fx\frac { \partial f } { \partial x } for f(x,y)=cos(xy)f ( x , y ) = \cos ( x y )

(Essay)
4.8/5
(26)

For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find the tangent plane to the surface defined by f at (1,2).

(Essay)
4.8/5
(26)
Showing 81 - 93 of 93
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)